cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A114487 Number of Dyck paths of semilength n having no UUDD's starting at level 0.

Original entry on oeis.org

1, 1, 1, 3, 10, 31, 98, 321, 1078, 3686, 12789, 44919, 159407, 570704, 2058817, 7476621, 27310345, 100275628, 369886451, 1370066394, 5093778398, 19002602171, 71109895075, 266855940177, 1004045604976, 3786790901401, 14313706230574, 54215799080454
Offset: 0

Views

Author

Emeric Deutsch, Nov 30 2005

Keywords

Examples

			a(3) = 3 because we have UDUDUD, UUDUDD and UUUDDD, where U=(1,1), D=(1,-1).
		

Crossrefs

Column 0 of A114486.

Programs

  • Maple
    G:=2/(1+2*z^2+sqrt(1-4*z)): Gser:=series(G,z=0,33): 1,seq(coeff(Gser,z^n),n=1..30);
  • Mathematica
    CoefficientList[Series[2/(1+2*x^2+Sqrt[1-4*x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
  • PARI
    x='x+O('x^50); Vec(2/(1+2*x^2+sqrt(1-4*x))) \\ G. C. Greubel, Mar 17 2017

Formula

G.f.: 2/(1+2*z^2+sqrt(1-4*z)).
a(n) ~ 4^(n+3) / (81*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 20 2014
a(n) = Sum_{k=0..n/2} (-1)^k*(k+1)/(2*n-3*k+1)*binomial(2*n-3*k+1, n-2*k). - Ira M. Gessel, Jun 16 2018
D-finite with recurrence (n+1)*a(n) +3*(-n+1)*a(n-1) +2*(-2*n+1)*a(n-2) +(n+1)*a(n-3) +2*(-2*n+1)*a(n-4)=0. - R. J. Mathar, Nov 13 2020

A346538 Table read by antidiagonals: T(n,k) is the number of paths in the Z X Z grid joining (0,0) and (n,k) each of whose steps increases the Euclidean distance to the origin and has coordinates with absolute value at most 1.

Original entry on oeis.org

1, 1, 1, 7, 3, 7, 29, 11, 11, 29, 173, 72, 25, 72, 173, 937, 382, 108, 108, 382, 937, 5527, 2295, 803, 241, 803, 2295, 5527, 32309, 13391, 4632, 1152, 1152, 4632, 13391, 32309, 193663, 80677, 29450, 9132, 2545, 9132, 29450, 80677, 193663
Offset: 0

Views

Author

Keywords

Examples

			Array begins:
     1,     1,     7,    29,    173,    937,   5527, ...
     1,     3,    11,    72,    382,   2295,  13391, ...
     7,    11,    25,   108,    803,   4632,  29450, ...
    29,    72,   108,   241,   1152,   9132,  56043, ...
   173,   382,   803,  1152,   2545,  12829, 106207, ...
   937,  2295,  4632,  9132,  12829,  28203, 147239, ...
  5527, 13391, 29450, 56043, 106207, 147239, 322681, ...
  ...
T(6,4) = T(5,3) + T(5,4) + T(5,5) + T(6,3) = 9132 + 12829 + 28203 + 56043 =106207.
T(7,5) = T(6,4) + T(6,5) + T(6,6) + T(7,4).
T(7,6) = T(6,6) + T(7,5) + T(6,5).
T(0,5) = T(-1,4) + T(0,4) + T(1,4).
		

Crossrefs

Main diagonal gives A346539.
Column (or row) k=0 gives A347814.

Programs

  • Maple
    T:= proc(n, k) option remember; `if`([n, k]=[0$2], 1, add(add(
         `if`(i^2+j^2Alois P. Heinz, Sep 08 2021
  • Mathematica
    rodean[{m_, n_}] := Select[ Complement[ Flatten[Table[{m, n} + {s, t}, {s, -1, 1}, {t, -1, 1}], 1] // Union, {{m, n}}], #[[1]]^2 + #[[2]]^2 < m^2 + n^2 &];
    $RecursionLimit = 10^6; Clear[T]; T[{0, 0}] = 1;
    T[{m_, n_}] := T[{m, n}] = Sum[T[rodean[{m, n}][[i]]],{i,Length[rodean[{m,n}]]}] ;
    Table[T[{k, n - k}], {n, 0, 12}, {k, 0, n}] // Flatten
    (* Second program: *)
    T[n_, k_] := T[n, k] = If[{n, k} == {0, 0}, 1, Sum[Sum[If[i^2 + j^2 < n^2 + k^2, T[i, j], 0], {j, k - 1, k + 1}], {i, n - 1, n + 1}]];
    Table[Table[T[n, d - n], {n, 0, d}], {d, 0, 8}] // Flatten (* Jean-François Alcover, Nov 03 2021, after Alois P. Heinz *)

Formula

T(n,k) = T(k,n).
Showing 1-2 of 2 results.