cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114487 Number of Dyck paths of semilength n having no UUDD's starting at level 0.

Original entry on oeis.org

1, 1, 1, 3, 10, 31, 98, 321, 1078, 3686, 12789, 44919, 159407, 570704, 2058817, 7476621, 27310345, 100275628, 369886451, 1370066394, 5093778398, 19002602171, 71109895075, 266855940177, 1004045604976, 3786790901401, 14313706230574, 54215799080454
Offset: 0

Views

Author

Emeric Deutsch, Nov 30 2005

Keywords

Examples

			a(3) = 3 because we have UDUDUD, UUDUDD and UUUDDD, where U=(1,1), D=(1,-1).
		

Crossrefs

Column 0 of A114486.

Programs

  • Maple
    G:=2/(1+2*z^2+sqrt(1-4*z)): Gser:=series(G,z=0,33): 1,seq(coeff(Gser,z^n),n=1..30);
  • Mathematica
    CoefficientList[Series[2/(1+2*x^2+Sqrt[1-4*x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
  • PARI
    x='x+O('x^50); Vec(2/(1+2*x^2+sqrt(1-4*x))) \\ G. C. Greubel, Mar 17 2017

Formula

G.f.: 2/(1+2*z^2+sqrt(1-4*z)).
a(n) ~ 4^(n+3) / (81*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 20 2014
a(n) = Sum_{k=0..n/2} (-1)^k*(k+1)/(2*n-3*k+1)*binomial(2*n-3*k+1, n-2*k). - Ira M. Gessel, Jun 16 2018
D-finite with recurrence (n+1)*a(n) +3*(-n+1)*a(n-1) +2*(-2*n+1)*a(n-2) +(n+1)*a(n-3) +2*(-2*n+1)*a(n-4)=0. - R. J. Mathar, Nov 13 2020