cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114489 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n that have k valleys at level 1.

Original entry on oeis.org

1, 1, 2, 4, 1, 9, 4, 1, 22, 14, 5, 1, 58, 46, 21, 6, 1, 163, 149, 80, 29, 7, 1, 483, 484, 292, 124, 38, 8, 1, 1494, 1589, 1044, 498, 179, 48, 9, 1, 4783, 5288, 3701, 1928, 780, 246, 59, 10, 1, 15740, 17848, 13096, 7304, 3237, 1152, 326, 71, 11, 1, 52956, 61060, 46428
Offset: 0

Views

Author

Emeric Deutsch, Dec 01 2005

Keywords

Comments

T(n,k) is also the number of Dyck paths of semilength n having k pairs of consecutive valleys at the same level. Example: T(4,1)=4 because we have U(DU)(DU)UDD, U(DU)UD(DU)D, UUD(DU)(DU)D, and UU(DU)(DU)DD, where U=(1,1), D=(1,-1); the pairs of consecutive same-level valleys are shown between parentheses. - Emeric Deutsch, Jun 19 2011
Rows 0 and 1 contain one term each; row n contains n-1 terms (n>=2).
Row sums are the Catalan numbers (A000108).
Column 0 yields A059019.
Sum(k*T(n,k), k=0..n-1) = 6*binomial(2*n-1,n-3)/(n+3) (A003517).

Examples

			T(4,1) = 4 because we have UU(DU)DDUD, UDUU(DU)DD, UU(DU)UDDD and UUUD(DU)DD, where U=(1,1), D=(1,-1); the valleys at level 1 are shown between parentheses.
Triangle starts:
1;
1;
2;
4,   1;
9,   4, 1;
22, 14, 5, 1;
		

Crossrefs

Programs

  • Maple
    C:=(1-sqrt(1-4*z))/2/z: G:=(1-t*z*C)/(1-t*z*C-z+t*z^2*C-z^2*C): Gser:=simplify(series(G,z=0,17)): P[0]:=1: for n from 1 to 12 do P[n]:=coeff(Gser,z^n) od: 1; 1; for n from 2 to 12 do seq(coeff(t*P[n],t^j),j=1..n-1) od; # yields sequence in triangular form
    # second Maple program:
    b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
          `if`(x=0, 1, expand(b(x-1, y-1, 1)+
          `if`(t=1 and y=1, z, 1)*b(x-1, y+1, 0))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0$2)):
    seq(T(n), n=0..14);  # Alois P. Heinz, Mar 12 2014
  • Mathematica
    b[x_, y_, t_] :=  b[x, y, t] = If[y>x || y<0, 0, If[x == 0, 1, Expand[b[x-1, y-1, 1] + If[t == 1 && y == 1, z, 1]*b[x-1, y+1, 0]]]]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[2*n, 0, 0]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, May 20 2015, after Alois P. Heinz *)

Formula

G.f.: (1-t*z*C)/((1-z)*(1-t*z*C)-z^2*C), where C=(1-sqrt(1-4*z))/(2*z) is the Catalan function.