cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114492 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n and having k DDUU's, where U=(1,1), D=(1,-1) (0<=k<=floor(n/2)-1 for n>=2).

Original entry on oeis.org

1, 1, 2, 5, 13, 1, 35, 7, 97, 34, 1, 275, 143, 11, 794, 558, 77, 1, 2327, 2083, 436, 16, 6905, 7559, 2180, 151, 1, 20705, 26913, 10051, 1095, 22, 62642, 94547, 43796, 6758, 268, 1, 190987, 328943, 183130, 37402, 2409, 29, 586219, 1136218, 742253, 191408
Offset: 0

Views

Author

Emeric Deutsch, Dec 01 2005

Keywords

Comments

Rows 0 and 1 contain one term each; row n contains floor(n/2) terms (n>=2).
Row sums are the Catalan numbers (A000108). Column 0 yields A086581.
Sum(k*T(n,k),k=0..floor(n/2)-1) = binomial(2n-3,n-4) (A003516).

Examples

			T(5,1) = 7 because we have UU(DDUU)DUDD, UU(DDUU)UDDD, UDUU(DDUU)DD, their mirror images and UUU(DDUU)DDD (the DDUU's are shown between parentheses).
Triangle starts:
   1;
   1;
   2;
   5;
  13,  1;
  35,  7;
  97, 34, 1;
  ...
		

Crossrefs

Programs

  • Maple
    G:=1/2/(-t*z-z^2+z^2*t)*(-1+2*z-2*t*z-z^2+z^2*t+sqrt(1+z^4-2*z^4*t+z^4*t^2-4*z+2*z^2-2*z^2*t)): Gser:=simplify(series(G,z=0,17)): P[0]:=1: for n from 1 to 14 do P[n]:=coeff(Gser,z^n) od: 1; 1; for n from 0 to 14 do seq(coeff(t*P[n],t^j),j=1..floor(n/2)) od; # yields sequence in triangular form
  • Mathematica
    m = 15; G[, ] = 0;
    Do[G[t_, z_] = (-1 + z - t z - t z G[t, z]^2 - z^2 G[t, z]^2 + t z^2 G[t, z]^2)/(-1 + 2z - 2t z - z^2 + t z^2) + O[t]^Floor[m/2] + O[z]^m, {m}];
    CoefficientList[#, t]& /@ Take[CoefficientList[G[t, z], z], m] // Flatten (* Jean-François Alcover, Oct 05 2019 *)

Formula

G.f.: G=G(t, z) satisfies z(t+z-tz)G^2-(1-2(1-t)z+(1-t)z^2)G+1-z+tz=0.