cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A003516 Binomial coefficients C(2n+1, n-2).

Original entry on oeis.org

1, 7, 36, 165, 715, 3003, 12376, 50388, 203490, 817190, 3268760, 13037895, 51895935, 206253075, 818809200, 3247943160, 12875774670, 51021117810, 202112640600, 800472431850, 3169870830126, 12551759587422
Offset: 2

Views

Author

Keywords

Comments

a(n) is the number of royal paths (A006318) from (0,0) to (n,n) with exactly one diagonal step off the line y=x. - David Callan, Mar 25 2004
a(n) is the total number of DDUU's in all Dyck (n+2)-paths. - David Scambler, May 03 2013

Examples

			For n=4, C(2*4+1,4-2) = C(9,2) = 9*8/2 = 36, so a(4) = 36. - _Michael B. Porter_, Sep 10 2016
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Diagonal 6 of triangle A100257.
Third unsigned column (s=2) of A113187. - Wolfdieter Lang, Oct 18 2012
Cf. triangle A114492 - Dyck paths with k DDUU's.
Cf. binomial(2*n+m, n): A000984 (m = 0), A001700 (m = 1), A001791 (m = 2), A002054 (m = 3), A002694 (m = 4), A002696 (m = 6), A030053 - A030056, A004310 - A004318.

Programs

  • GAP
    List([2..25], n-> Binomial(2*n+1, n-2)); # G. C. Greubel, Mar 21 2019
  • Magma
    [Binomial(2*n+1,n-2): n in [2..25]]; // Vincenzo Librandi, Apr 13 2011
    
  • Mathematica
    CoefficientList[ Series[ 32/(((Sqrt[1 - 4 x] + 1)^5)*Sqrt[1 - 4 x]), {x, 0, 25}], x] (* Robert G. Wilson v, Aug 08 2011 *)
    Table[Binomial[2*n +1,n-2], {n,2,25}] (* G. C. Greubel, Jan 23 2017 *)
  • PARI
    {a(n) = binomial(2*n+1, n-2)}; \\ G. C. Greubel, Mar 21 2019
    
  • Sage
    [binomial(2*n+1, n-2) for n in (2..25)] # G. C. Greubel, Mar 21 2019
    

Formula

G.f.: 32*x^2/(sqrt(1-4*x)*(sqrt(1-4*x)+1)^5). - Marco A. Cisneros Guevara, Jul 18 2011
a(n) = Sum_{k=0..n-2} binomial(n+k+2,k). - Arkadiusz Wesolowski, Apr 02 2012
D-finite with recurrence (n+3)*(n-2)*a(n) = 2*n*(2*n+1)*a(n-1). - R. J. Mathar, Oct 13 2012
G.f.: x^2*c(x)^5/sqrt(1-4*x) = ((-1 + 2*x) + (1 - 3*x + x^2) * c(x))/(x^2*sqrt(1-4*x)), with c(x) the o.g.f. of the Catalan numbers A000108. See the W. Lang link under A115139 for powers of c. - Wolfdieter Lang, Sep 10 2016
a(n) ~ 2^(2*n+1)/sqrt(Pi*n). - Ilya Gutkovskiy, Sep 10 2016
From Amiram Eldar, Jan 24 2022: (Start)
Sum_{n>=2} 1/a(n) = 4 - 14*Pi/(9*sqrt(3)).
Sum_{n>=2} (-1)^n/a(n) = 228*log(phi)/(5*sqrt(5)) - 134/15, where phi is the golden ratio (A001622). (End)
G.f.: 2F1([7/2,3],[6],4*x). - Karol A. Penson, Apr 24 2024
a(n) = Integral_{x = 0..4} x^n * w(x) dx, where the weight function w(x) = 1/(2*Pi) * sqrt(x)*(x^2 - 5*x + 5)/sqrt(4 - x). - Peter Bala, Oct 13 2024

A086581 Number of Dyck paths of semilength n with no DDUU.

Original entry on oeis.org

1, 1, 2, 5, 13, 35, 97, 275, 794, 2327, 6905, 20705, 62642, 190987, 586219, 1810011, 5617914, 17518463, 54857506, 172431935, 543861219, 1720737981, 5459867166, 17369553427, 55391735455, 177040109419, 567019562429, 1819536774089
Offset: 0

Views

Author

Michael Somos, Jul 22 2003

Keywords

Comments

See A025242 for a bijection between paths avoiding UUDD versus DDUU.
Number of lattice paths, never going below the x-axis, from (0,0) to (n,0) consisting of up steps U(k) = (k,1) for every positive integer k, down steps D = (1,-1) and horizontal steps H. - José Luis Ramírez Ramírez, Apr 19 2015
Given a sequence variant with 0 inserted between the two 1's, the INVERT transform of the modified sequence is this sequence. - Gary W. Adamson, Jun 28 2015

Examples

			a(4) = 13 because of the 14 Dyck 4-paths only UUDDUUDD contains DDUU.
		

Crossrefs

Column k=0 of A114492.

Programs

  • Maple
    F:= gfun:-rectoproc({(n+2)*a(n) +(n+3)*a(n-1) +2*(-9*n+4)*a(n-2) +10*(n-2)*a(n-3) +(n-4)*a(n-4) +5*(n-5)*a(n-5)=0, seq(a(n)=[1,1,2,5,13][n+1],n=0..4)},a(n),remember):
    map(F, [$0..30]); # Robert Israel, Jun 29 2015
  • Mathematica
    CoefficientList[ Series[(1 - 2 x + x^2 - Sqrt[1 - 4 x + 2 x^2 + x^4])/(2 x^2), {x, 0, 27}], x] (* Robert G. Wilson v, Mar 25 2011 *)
  • PARI
    {a(n) = polcoeff((1 - 2*x + x^2 - sqrt(1 - 4*x + 2*x^2 + x^4 + x^3 * O(x^n))) / 2, n+2)}
    
  • PARI
    a(n)=1+sum(k=0,n,sum(i=0,k,binomial(n-1,k)*binomial(2*i+2,i)*binomial(i+2,k-2*i-1)/(i+1))) \\ Thomas Baruchel, Jan 19 2015

Formula

G.f. A(x) satisfies the equation 0 = 1 - x - (1 - x)^2 * A(x) + (x * A(x))^2.
a(n) = A025242(n+1) = A082582(n+1).
G.f.: (1 - 2*x + x^2 - sqrt(1 - 4*x + 2*x^2 + x^4)) /(2 * x^2).
a(n+2) - 2*a(n+1) + a(n) = a(0)*a(n) + a(1)*a(n-1) + ... + a(n)*a(0).
G.f.: (1/(1-x))*c(x^2/(1-x)^3), c(x) the g.f. of A000108; a(n)=sum{k=0..floor(n/2), C(n+k,3k)*A000108(k)}. - Paul Barry, May 31 2006
Conjecture: (n+2)*a(n) +(n+3)*a(n-1) +2*(-9*n+4)*a(n-2) +10*(n-2)*a(n-3) +(n-4)*a(n-4) +5*(n-5)*a(n-5)=0. - R. J. Mathar, Nov 26 2012
G.f. satisfies (10*x^3-28*x^2+4*x+2)*A(x) + (5*x^6+x^5+10*x^4-18*x^3+x^2+x)*A'(x) = 5*x^4+x^3-15*x^2+7*x+2. This confirms R. J. Mathar's recurrence equation. - Robert Israel, Jun 29 2015
G.f.: 1 - G(0), where G(k)= 1 - 1/(1 - x/(1 - x/(1 - x/(1 - x/(x - 1/G(k+1) ))))); (continued fraction). - Sergei N. Gladkovskii, Jul 12 2013
G.f.: 1/G(0) where G(k) = 1 - q/(1 - q - q^2 / G(k+1) ); (continued fraction). - Joerg Arndt, Feb 27 2014
From Thomas Baruchel, Jan 19 2015: (Start)
a(n) = 1+Sum_{k=0..n} Sum_{i=0..k} C(n-1,k)*C(2i+2,i)*C(i+2,k-2i-1)/(i+1).
a(n) = Sum_{k=0..n} C(2k,k)*C(n+k,3k)/(k+1).
Sum_{k=0..n} a(k+1)*A108626(n-k) = Sum_{k=0..n} Sum_{i=0..k} binomial(n-k+1,i-1)*binomial(n-k+1,i)*binomial(n-i+1,k-i). (End)

Extensions

Name corrected by David Scambler, Mar 28 2011

A114302 Number of "sweet" Boolean functions of n variables.

Original entry on oeis.org

2, 3, 6, 18, 106, 2102, 456774, 7108935325
Offset: 0

Views

Author

Don Knuth, Aug 16 2008

Keywords

Comments

A sweet Boolean function is a monotone function whose BDD (binary decision diagram) is the same as the ZDD (zero-suppressed decision diagram) for its prime implicants (aka minimal solutions).
Equivalently, this is the number of sweet antichains contained in {1,...,n}. (Also called sweet clutters.) A sweet antichain whose largest element is n is a family of subsets A \cup (n\cup B) where A and B are sweet antichains in {1,...n-1}, B is nonempty and every element of A properly contains some element of B.
The property of being "sweet" depends on the order of the variables - compare A114491.

Examples

			All six of the antichains in {1,2} are sweet. They are emptyset, {emptyset}, {{1}}, {{2}}, {{1,2}} and {{1},{2}}.
Only 18 of the 20 antichains in {1,2,3} are sweet. The nonsweet ones are {{1,3},{2}} and {{1},{2,3}}. Because, in the latter case, A={1} and B={2}. However, {{1,2},{3}} is sweet because A={{1,2}} and B={emptyset}.
Some of the most interesting members of this apparently new family of Boolean functions are the connectedness functions, defined on the edges of any graph. The function f=[these arcs give a connected subgraph] is sweet, under any ordering of the arcs. Threshold functions [x_1+...+x_n >= k] are sweet too.
Also the conjunction of sweet functions on disjoint sets of variables is sweet.
		

References

  • Donald E. Knuth, The Art of Computer Programming, Vol. 4, fascicle 1, section 7.1.4, p. 117, Addison-Wesley, 2009.

Crossrefs

A114303 Number of sweet Boolean functions of n variables that depend on all the variables.

Original entry on oeis.org

2, 1, 2, 7, 60, 1705, 445466, 7105778862
Offset: 0

Views

Author

Don Knuth, Aug 16 2008

Keywords

Crossrefs

Formula

Inverse binomial transform of A114302.
Showing 1-4 of 4 results.