cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114499 Triangle read by rows: number of Dyck paths of semilength n having k 3-bridges of a given shape (0<=k<=floor(n/3)). A 3-bridge is a subpath of the form UUUDDD or UUDUDD starting at level 0.

Original entry on oeis.org

1, 1, 2, 4, 1, 12, 2, 37, 5, 119, 12, 1, 390, 36, 3, 1307, 114, 9, 4460, 376, 25, 1, 15452, 1262, 78, 4, 54207, 4310, 255, 14, 192170, 14934, 863, 44, 1, 687386, 52397, 2967, 145, 5, 2477810, 185780, 10338, 492, 20, 8992007, 664631, 36424, 1712, 70, 1
Offset: 0

Views

Author

Emeric Deutsch, Dec 04 2005

Keywords

Comments

Row n has 1+floor(n/3) terms. Row sums are the Catalan numbers (A000108). Column 0 is A114500. Sum(kT(n,k),k=0..floor(n/3))=Catalan(n-2) (n>=3; A000108).

Examples

			T(4,1)=2 because we have UD(UUUDDD) and (UUUDDD)UD (or UD(UUDUDD) and (UUDUDD)UD). The 3-bridges are shown between parentheses.
Triangle starts:
1;
1;
2;
4,1;
12,2;
37,5;
119,12,1;
390,36,3;
1307,114,9;
		

Crossrefs

Programs

  • Maple
    C:=(1-sqrt(1-4*z))/2/z: G:=1/(1-z*C+z^3-t*z^3): Gser:=simplify(series(G,z=0,20)): P[0]:=1: for n from 1 to 17 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 17 do seq(coeff(t*P[n],t^j),j=1..1+floor(n/3)) od; # yields sequence in triangular form

Formula

G.f.=1/(1+z^3-tz^3-zC), where C=[1-sqrt(1-4z)]/(2z) is the Catalan function.