A114499 Triangle read by rows: number of Dyck paths of semilength n having k 3-bridges of a given shape (0<=k<=floor(n/3)). A 3-bridge is a subpath of the form UUUDDD or UUDUDD starting at level 0.
1, 1, 2, 4, 1, 12, 2, 37, 5, 119, 12, 1, 390, 36, 3, 1307, 114, 9, 4460, 376, 25, 1, 15452, 1262, 78, 4, 54207, 4310, 255, 14, 192170, 14934, 863, 44, 1, 687386, 52397, 2967, 145, 5, 2477810, 185780, 10338, 492, 20, 8992007, 664631, 36424, 1712, 70, 1
Offset: 0
Examples
T(4,1)=2 because we have UD(UUUDDD) and (UUUDDD)UD (or UD(UUDUDD) and (UUDUDD)UD). The 3-bridges are shown between parentheses. Triangle starts: 1; 1; 2; 4,1; 12,2; 37,5; 119,12,1; 390,36,3; 1307,114,9;
Programs
-
Maple
C:=(1-sqrt(1-4*z))/2/z: G:=1/(1-z*C+z^3-t*z^3): Gser:=simplify(series(G,z=0,20)): P[0]:=1: for n from 1 to 17 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 17 do seq(coeff(t*P[n],t^j),j=1..1+floor(n/3)) od; # yields sequence in triangular form
Formula
G.f.=1/(1+z^3-tz^3-zC), where C=[1-sqrt(1-4z)]/(2z) is the Catalan function.
Comments