cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114536 Let the height of a polynomial be the largest coefficient in absolute value. Then a(n) is the maximal height of a divisor of x^n-1 with integral coefficients.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 3, 1, 1, 2, 1, 4, 3, 2, 1, 3, 1, 2, 1, 4, 1, 12, 1, 1, 3, 2, 5, 4, 1, 2, 3, 5, 1, 12, 1, 4, 5, 2, 1, 6, 1, 2, 3, 4, 1, 2, 5, 7, 3, 2, 1, 54, 1, 2, 7, 1, 5, 12, 1, 4, 3, 32, 1, 8, 1, 2, 3, 4, 7, 12, 1, 7, 1, 2, 1, 55, 5, 2, 3, 8, 1, 58, 7, 4, 3, 2, 5, 6, 1, 2, 9, 4, 1, 12
Offset: 1

Views

Author

Felipe Garcia (fgarciah(AT)ucla.edu), Feb 15 2006

Keywords

Examples

			a(6)=2 since (x+1)(x^2+x+1)=x^3+2x^2+2x+1 divides x^6-1 and no other divisor has a greater height.
		

Crossrefs

Cf. A117215 (number of divisors of x^n-1 having the maximal height).

Programs

  • Mathematica
    cyc[n_] := cyc[n] = Cyclotomic[n, x]; f[n_] := Block[{sd = Rest@ Subsets@ Divisors@ n, lst = {}, lmt = 2^DivisorSigma[0, n]}, For[i = 1, i < lmt, i++, AppendTo[lst, Max@ Abs@ CoefficientList[ Expand[ Times @@ (cyc[ # ] & /@ sd[[i]])], x]]]; Max@lst]; Array[f, 102] (* Robert G. Wilson v, Mar 01 2006 *)
  • PARI
    A114536(n) = { my(ds=divisors('x^n - 1),m=0); for(i=1,length(ds),for(j=0,poldegree(ds[i]),m = max(m,abs(polcoeff(ds[i],j))))); (m); }; \\ Antti Karttunen, Jul 01 2018
    
  • PARI
    \\ This version needs less memory:
    prod_by_bits(bits, fs) = { my(m=1,i=1); while(bits>0, if((bits%2),m *= fs[i]); i++; bits >>= 1); (m); };
    A114536(n) = { my(fs=factor('x^n - 1)[,1],m=0,d); for(b=1,(2^#fs)-1,d = prod_by_bits(b,fs); for(j=0,poldegree(d),m = max(m,abs(polcoeff(d,j))))); (m); }; \\ Antti Karttunen, Jul 01 2018

Formula

a(n)=1 iff n=1 or n=p^k where p is a prime and k is a positive integer; a(pq)=min{p,q} where p and q are distinct primes.

Extensions

Edited and extended by Robert G. Wilson v, Mar 01 2006