cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114550 Decimal expansion of the constant Sum_{n>=0} 1/A112373(n), where the partial quotients of the continued fraction A114551 satisfy A114551(2n) = A112373(n) and A114551(2n+1) = A112373(n+1)/A112373(n).

Original entry on oeis.org

2, 5, 8, 4, 4, 0, 1, 7, 2, 4, 0, 1, 9, 7, 7, 6, 7, 2, 4, 8, 1, 2, 0, 7, 6, 1, 4, 7, 1, 5, 3, 3, 3, 1, 3, 4, 2, 1, 1, 2, 3, 8, 2, 0, 9, 0, 4, 6, 7, 9, 6, 9, 0, 0, 0, 3, 1, 3, 4, 3, 8, 5, 8, 3, 9, 6, 7, 5, 4, 4, 8, 2, 9, 8, 9, 1, 8, 6, 7, 9, 6, 3, 6, 1, 4, 0, 8, 8, 7, 4, 6, 9, 7, 7, 8, 0, 1, 8, 6, 9, 6, 4, 2, 7, 2
Offset: 1

Views

Author

Paul D. Hanna, Dec 08 2005

Keywords

Comments

A112373 is defined by the recurrence: let b(n) = A112373(n), then
b(n) =(b(n-1)^3 + b(n-1)^2)/b(n-2) for n>=2 with b(0)=b(1)=1.
Thus the sum of unit fractions 1/A112373(n) converges rapidly.

Examples

			2.584401724019776724812076147153331342112382090467969...
= Sum_{n>=0} 1/A112373(n) = 1/1 +1/1 +1/2 +1/12 +1/936 +1/68408496 +...
= [2;1,1,2,2,6,12,78,936,73086,68408496,...] (continued fraction).
		

Crossrefs

Cf. A112373, A114551 (continued fraction), A114552.

Programs

  • Mathematica
    dm = 5; digits = 105;
    b[n_] := b[n] = If[n < 2, 1, (b[n - 1]^3 + b[n - 1]^2)/b[n - 2]];
    s[m_] := s[m] = N[Sum[1/b[n], {n, 0, m}], digits + 5];
    s[m = dm];
    s[m += dm];
    While[RealDigits[s[m]] != RealDigits[s[m - dm]], m += dm];
    RealDigits[s[m], 10, digits][[1]] (* Jean-François Alcover, Sep 30 2019 *)
    c[0]=2; c[1] = c[2] = 1; c[n_] := c[n] = c[n-1] c[n-2] + Mod[n, 2] c[n-2];
    RealDigits[FromContinuedFraction[c /@ Range[0, 14]], 10, 105][[1]] (* Jean-François Alcover, Oct 01 2019 *)