cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114576 Triangle read by rows: T(n,k) is number of Motzkin paths of length n having k UH's, where U=(1,1), H=(1,0) (0<=k<=floor(n/3)).

Original entry on oeis.org

1, 1, 2, 3, 1, 6, 3, 11, 10, 23, 26, 2, 47, 70, 10, 102, 176, 45, 221, 449, 160, 5, 493, 1121, 539, 35, 1105, 2817, 1680, 196, 2516, 7031, 5082, 868, 14, 5763, 17604, 14856, 3486, 126, 13328, 43996, 42660, 12810, 840, 30995, 110147, 120338, 44640, 4410, 42
Offset: 0

Views

Author

Emeric Deutsch, Dec 09 2005

Keywords

Comments

Row n contains 1+floor(n/3) terms. Row sums are the Motzkin numbers (A001006). Column 0 yields A090344. Sum(k*T(n,k),k=0..floor(n/3))=A014531(n-2).

Examples

			T(4,1)=3 because we have H(UH)D, (UH)DH and (UH)HD, where U=(1,1), H=(1,0), D=(1,-1) (the UH's are shown between parentheses).
Triangle begins:
1;
1;
2;
3,1;
6,3;
11,10;
23,26,2;
47,70,10;
		

Crossrefs

Programs

  • Maple
    G:=(1-z-sqrt(1-2*z-3*z^2-4*z^3*t+4*z^3))/2/z^2/(1-z+t*z): Gser:=simplify(series(G,z=0,20)): P[0]:=1: for n from 1 to 16 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 16 do seq(coeff(t*P[n],t^j),j=1..1+floor(n/3)) od; # yields sequence in triangular form

Formula

G.f.=[1-z-sqrt(1-2z-3z^2-4tz^3+4z^3)]/[2(1-z+tz)z^2].