cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114580 Triangle read by rows: T(n,k) is the number of Motzkin paths of length n having k ascents (0<=k<=floor(n/2)); an ascent is a maximal string of upsteps.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 7, 1, 1, 14, 6, 1, 26, 23, 1, 1, 46, 70, 10, 1, 79, 186, 56, 1, 1, 133, 451, 235, 15, 1, 221, 1025, 825, 115, 1, 1, 364, 2220, 2562, 630, 21, 1, 596, 4634, 7274, 2794, 211, 1, 1, 972, 9396, 19286, 10696, 1456, 28, 1, 1581, 18612, 48450, 36715
Offset: 0

Views

Author

Emeric Deutsch, Dec 09 2005

Keywords

Comments

Row n contains 1+floor(n/2) terms. Row sums are the Motzkin numbers (A001006). Sum(k*T(n,k),k=0..floor(n/2))=A005774(n-1).

Examples

			T(4,1) = 7 because we have HH(U)D, H(U)DH, H(U)HD, (U)DHH, (U)HDH, (U)HHD and (UU)HH, where U=(1,1), H=(1,0), D=(1,-1) (the ascents are shown between parentheses).
Triangle begins:
1;
1;
1,  1;
1,  3;
1,  7,  1;
1, 14,  6;
1, 26, 23, 1;
		

Crossrefs

Programs

  • Maple
    G:=1/2*(1-z+z^2-t*z^2-sqrt(1-z^2-2*z+2*z^3-2*z^3*t-2*z^2*t+z^4-2*z^4*t+z^4*t^2))/z^2/(z*t+1-z): Gserz:=simplify(series(G,z=0,18)): P[0]:=1: for n from 1 to 15 do P[n]:=sort(coeff(Gserz,z^n)) od: for n from 0 to 15 do seq(coeff(t*P[n],t^j),j=1..1+floor(n/2)) od; # yields sequence in triangular form
    # second Maple program:
    b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
          `if`(x=0, 1, expand(`if`(t, 1, z)*b(x-1, y-1, true)
          +b(x-1, y+1, false)+b(x-1, y, false))))
        end:
    T:= n->(p->seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0, false)):
    seq(T(n), n=0..20);  # Alois P. Heinz, Mar 11 2014
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[y>x || y<0, 0, If[x == 0, 1, Expand[If[t, 1, z]*b[x-1, y-1, True] + b[x-1, y+1, False] + b[x-1, y, False]]]]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[n, 0, False]]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, May 22 2015, after Alois P. Heinz *)

Formula

G.f.: G(t,z) satisfies G = 1+zG+z^2[t(1+zG)+G-1-zG]G.