cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114581 Triangle read by rows: T(n,k) is the number of Motzkin paths of length n having k UDH's starting at level 0 (U=(1,1),H=(1,0),D=(1,-1)).

Original entry on oeis.org

1, 1, 2, 3, 1, 7, 2, 16, 5, 40, 10, 1, 100, 24, 3, 256, 58, 9, 663, 149, 22, 1, 1741, 386, 57, 4, 4620, 1017, 147, 14, 12376, 2702, 392, 40, 1, 33416, 7248, 1053, 113, 5, 90853, 19590, 2859, 312, 20, 248515, 53318, 7803, 870, 65, 1, 683429, 145984, 21420, 2428
Offset: 0

Views

Author

Emeric Deutsch, Dec 09 2005

Keywords

Comments

Row n contains 1+floor(n/3) terms. Row sums are the Motzkin numbers (A001006). Column 0 yields A114582. Sum(k*T(n,k),k=0..floor(n/3))=A002026(n-2).

Examples

			T(7,2)=3 because we have (UDH)(UDH)H, H(UDH)(UDH) and (UDH)H(UDH), where U=(1,1),H=(1,0),D=(1,-1) (the UDH's starting at level 0 are shown between parentheses).
Triangle starts:
1;
1;
2;
3,1;
7,2;
16,5;
40,10,1;
		

Crossrefs

Programs

  • Maple
    G:=2/(1-z-2*t*z^3+2*z^3+sqrt(1-2*z-3*z^2)): Gser:=simplify(series(G,z=0,21)): P[0]:=1: for n from 1 to 17 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 17 do seq(coeff(t*P[n],t^j),j=1..1+floor(n/3)) od; # yields sequence in triangular form

Formula

G.f.=2/[1-z-2tz^3+2z^3+sqrt(1-2z-3z^2)].