cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A114582 Number of Motzkin paths of length n having no UDH's starting at level 0 (U=(1,1), H=(1,0), D=(1,-1)).

Original entry on oeis.org

1, 1, 2, 3, 7, 16, 40, 100, 256, 663, 1741, 4620, 12376, 33416, 90853, 248515, 683429, 1888449, 5240509, 14598709, 40810390, 114447429, 321885675, 907723460, 2566079622, 7270598910, 20643413513, 58727234739, 167373377361
Offset: 0

Views

Author

Emeric Deutsch, Dec 09 2005

Keywords

Comments

Column 0 of A114581.

Examples

			a(3)=3 because we have HHH, HUD, UHD, where U=(1,1), H=(1,0), D=(1,-1).
		

Crossrefs

Cf. A114581.

Programs

  • Maple
    G:=2/(1-z+2*z^3+sqrt(1-2*z-3*z^2)): Gser:=series(G,z=0,35): 1,seq(coeff(Gser,z^n),n=1..32);
  • Maxima
    a(n):=sum((k*sum(binomial(j,k+2*j-n-3)*binomial(n-2*k+3,j),j,0,n-2*k+3))/(n-2*k+3)*(-1)^(k-1),k,1,n/3+1); /* Vladimir Kruchinin, Oct 22 2011 */

Formula

G.f.: 2/(1 - z + 2z^3 + sqrt(1-2z-3z^2)).
a(n) = Sum(k=1..n/3+1, (k*Sum(j=0..n-2*k+3, binomial(j,k+2*j-n-3)*binomial(n-2*k+3,j)))/(n-2*k+3)*(-1)^(k-1)). - Vladimir Kruchinin, Oct 22 2011
D-finite with recurrence +(n+1)*a(n) +2*(-n+1)*a(n-1) +2*(-2*n+1)*a(n-2) +(3*n-1)*a(n-3) +(n-1)*a(n-4) +3*(-n+1)*a(n-5)=0. - R. J. Mathar, Mar 24 2018
Showing 1-1 of 1 results.