A114589 Number of hill-free Dyck paths of semilength n+3 and having no peaks at even levels (a hill in a Dyck path is a peak at level 1).
1, 1, 3, 7, 17, 43, 110, 286, 753, 2003, 5376, 14540, 39589, 108427, 298512, 825664, 2293271, 6393539, 17885835, 50191175, 141247519, 398537101, 1127203038, 3195229662, 9076078057, 25830193513, 73643406563, 210312889095
Offset: 0
Keywords
Examples
a(2)=3 because we have UUUDDUUDDD, UUUDUDUDDD and UUUUUDDDDD, where U=(1,1), D=(1,-1).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Maple
G:=(1-z-2*z^2-2*z^3-sqrt(1-3*z^2-2*z))/2/z^4/(2+2*z+z^2): Gser:=series(G,z=0,35): 1, seq(coeff(Gser,z^n),n=1..30);
-
Mathematica
CoefficientList[Series[(1-x-2*x^2-2*x^3-Sqrt[1-3*x^2-2*x])/2/x^4 /(2+2*x+x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
-
PARI
x='x+('x^50); Vec((1-x-2*x^2-2*x^3-sqrt(1-3*x^2-2*x))/(2*x^4*(2+2*x+x^2))) \\ G. C. Greubel, Mar 17 2017
Formula
G.f.: (1 -z -2*z^2 -2*z^3 -sqrt(1-3*z^2-2*z))/(2*z^4*(2+2*z+z^2)).
a(n) ~ 3^(n+11/2) / (50*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 20 2014
Conjecture: 2*(n+4)*a(n) +2*(-n-1)*a(n-1) +3*(-3*n-4)*a(n-2) +(-8*n-11)*a(n-3) +3*(-n-1)*a(n-4)=0. - R. J. Mathar, Jul 02 2018
Comments