cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114627 Number of hill-free Dyck paths of semilength n+3 and having no peaks at level 2 (a Dyck path is said to be hill-free if it has no peaks at level 1).

Original entry on oeis.org

1, 2, 6, 19, 61, 202, 683, 2348, 8184, 28855, 102731, 368813, 1333684, 4853436, 17761181, 65320691, 241300829, 894958140, 3331323651, 12441078958, 46601721324, 175040968111, 659136721385, 2487852579751, 9410480922018
Offset: 0

Views

Author

Emeric Deutsch, Dec 18 2005

Keywords

Comments

Column 0 of A114626.

Examples

			a(1)=2 because we have UUUDUDDD and UUUUDDDD, where U=(1,1), D=(1,-1).
		

Crossrefs

Programs

  • Maple
    C:=(1-sqrt(1-4*z))/2/z: G:=(C-1)/z/(1+z+z^2-z*(1+z)*C): Gser:=series(G,z=0,32): 1,seq(coeff(Gser,z^n),n=1..28);
  • Mathematica
    CoefficientList[Series[((1-Sqrt[1-4*x])/2/x-1)/x/(1+x+x^2-x*(1+x)*(1-Sqrt[1-4*x])/2/x), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
  • PARI
    x='x+O('x^50); Vec((1-2*x-sqrt(1-4*x))/(x^2*(2*x^2+x+1+(1+x)*sqrt(1-4*x)))) \\ G. C. Greubel, Mar 18 2017

Formula

G.f.: (C-1)/(z*(1+z+z^2-z*(1+z)*C)), where C = (1-sqrt(1-4*z))/(2*z) is the Catalan function.
a(n) ~ 4^(n+5) / (121*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 20 2014
D-finite with recurrence +(n+3)*a(n) +(-n+3)*a(n-1) +2*(-5*n-6)*a(n-2) +(-7*n-9)*a(n-3) +2*(-2*n-3)*a(n-4)=0. - R. J. Mathar, Jul 26 2022