A114638 Number of partitions of n such that number of parts is equal to the sum of parts counted without multiplicities.
1, 1, 0, 0, 2, 1, 1, 0, 2, 2, 3, 5, 5, 6, 9, 7, 8, 14, 12, 16, 21, 28, 32, 43, 47, 61, 68, 84, 89, 109, 126, 140, 170, 198, 227, 261, 323, 362, 427, 501, 581, 658, 794, 880, 1036, 1175, 1355, 1526, 1776, 1985, 2281, 2588, 2943, 3312, 3799, 4271, 4852, 5497
Offset: 0
Keywords
Examples
a(10) = 3 because we have [5,1,1,1,1,1], [3,3,3,1] and [3,2,2,1,1,1]. From _Gus Wiseman_, Mar 09 2019: (Start) The a(1) = 1 through a(12) = 5 integer partitions (empty columns not shown): 1 22 221 3111 3311 333 3331 32222 33222 211 41111 321111 322111 44111 322221 511111 322211 332211 332111 4221111 4211111 6111111 (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Crossrefs
Programs
-
Maple
a:=proc(n) local P,c,j,S: with(combinat): P:=partition(n): c:=0: for j from 1 to nops(P) do S:=convert(P[j],set): if nops(P[j])=sum(S[i],i=1..nops(S)) then c:=c+1 else c:=c fi: c: od: end: seq(a(n), n=0..35); # Emeric Deutsch, Mar 01 2006
-
Mathematica
a[n_] := Module[{P, c, j, S}, P = IntegerPartitions[n]; c = 0; For[j = 1, j <= Length[P], j++, S = Union[P[[j]]]; If[Length[P[[j]]] == Total[S], c++] ]; c]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 07 2018, after Emeric Deutsch *)
-
PARI
apply( A114638(n,s=0)={forpart(p=n,#p==vecsum(Set(p))&&s++); s}, [0..50]) \\ M. F. Hasler, Oct 27 2019
Extensions
More terms from Emeric Deutsch, Mar 01 2006
Comments