cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114646 Let M(n) be the n X n matrix m(i,j)=min(i,j) for 1<=i,j<=n then a(n) is the trace of M(n)^(-4).

Original entry on oeis.org

1, 47, 117, 187, 257, 327, 397, 467, 537, 607, 677, 747, 817, 887, 957, 1027, 1097, 1167, 1237, 1307, 1377, 1447, 1517, 1587, 1657, 1727, 1797, 1867, 1937, 2007, 2077, 2147, 2217, 2287, 2357, 2427, 2497, 2567, 2637, 2707, 2777, 2847, 2917, 2987, 3057
Offset: 1

Views

Author

Benoit Cloitre, Feb 09 2006

Keywords

Comments

More generally for any n>=floor((m+1)/2) the trace of M(n)^(-m) = binomial(2*m,m)*n-2^(2*m-1)+binomial(2*m-1,m).

Programs

  • PARI
    a(n)=if(n<2,1,70*n-93)

Formula

a(1)=1 then a(n)=70n-93.
(Conjecture) G.f.: F(x)=x*(1+45*x+24*x^2)/(1-x)^2. - L. Edson Jeffery, Jan 21 2012
(Conjecture) a(n)=2*a(n-1)-a(n-2), n>1, a(1)=1, a(2)=47. - L. Edson Jeffery, Jan 21 2012