A114650 a(1)=1. For n>1, a(n) is smallest positive integer not among the earlier terms of the sequence such that floor(log(a(n))) does not equal floor(log(a(n-1))).
1, 3, 2, 4, 8, 5, 9, 6, 10, 7, 11, 21, 12, 22, 13, 23, 14, 24, 15, 25, 16, 26, 17, 27, 18, 28, 19, 29, 20, 30, 55, 31, 56, 32, 57, 33, 58, 34, 59, 35, 60, 36, 61, 37, 62, 38, 63, 39, 64, 40, 65, 41, 66, 42, 67, 43, 68, 44, 69, 45, 70, 46, 71, 47, 72, 48, 73, 49, 74, 50, 75, 51
Offset: 1
Examples
Since all positive integers m where floor(log(m)) equals 0 or 1 occur among the first 11 terms of the sequence and since floor(log(a(11))) = 2, then a(12) must be 21 (which is the smallest positive integer m such that floor(log(m)) = 3).
Extensions
More terms from Klaus Brockhaus, Dec 25 2005
Comments