A114656
Triangle read by rows: T(n,k) is the number of double rise-bicolored Dyck paths (double rises come in two colors; also called marked Dyck paths) of semilength n and having k peaks (1 <= k <= n).
Original entry on oeis.org
1, 2, 1, 4, 6, 1, 8, 24, 12, 1, 16, 80, 80, 20, 1, 32, 240, 400, 200, 30, 1, 64, 672, 1680, 1400, 420, 42, 1, 128, 1792, 6272, 7840, 3920, 784, 56, 1, 256, 4608, 21504, 37632, 28224, 9408, 1344, 72, 1, 512, 11520, 69120, 161280, 169344, 84672, 20160, 2160, 90
Offset: 1
T(3,2)=6 because we have (UD)Ub(UD)D, (UD)Ur(UD)D, Ub(UD)D(UD), Ur(UD)D(UD), Ub(UD)(UD)D and Ur(UD)(UD)D, where U=(1,1), D=(1,-1) and b (r) indicates a blue (red) double rise (the peaks are shown between parentheses).
Triangle begins:
1;
2, 1;
4, 6, 1;
8, 24, 12, 1;
16, 80, 80, 20, 1;
....
Triangle T(n,k), 0 <= k <= n, given by [0,2,0,2,0,2,0,2,...] DELTA [1,0,1,0,1,0,1,0,1,0,...] begins: 1; 0,1; 0,2,1; 0,4,6,1; 0,8,24,12,1; 0,16,80,80,20,1; ... - _Philippe Deléham_, Jan 02 2009
-
T:=(n,k)->2^(n-k)*binomial(n,k)*binomial(n,k-1)/n: for n from 1 to 11 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form
-
Table[2^(n - k) Binomial[n, k] Binomial[n, k - 1]/n, {n, 10}, {k, n}] // Flatten (* Michael De Vlieger, Apr 23 2019 *)
A114690
Triangle read by rows: T(n,k) is the number of Motzkin paths of length n and having k weak ascents (1 <= k <= ceiling(n/2)).
Original entry on oeis.org
1, 2, 3, 1, 5, 4, 8, 12, 1, 13, 31, 7, 21, 73, 32, 1, 34, 162, 116, 11, 55, 344, 365, 70, 1, 89, 707, 1041, 335, 16, 144, 1416, 2762, 1340, 135, 1, 233, 2778, 6932, 4726, 820, 22, 377, 5358, 16646, 15176, 4039, 238, 1, 610, 10188, 38560, 45305, 17157, 1785, 29, 987
Offset: 1
T(4,2)=4 because we have (HU)D(H),(U)D(HH),(U)D(U)D and (UH)D(H) (the weak ascents are shown between parentheses).
Triangle starts:
1;
2;
3, 1;
5, 4;
8, 12, 1;
13, 31, 7;
...
- Alois P. Heinz, Rows n = 1..200, flattened
- Jean-Luc Baril and José Luis Ramírez, Descent distribution on Catalan words avoiding ordered pairs of Relations, arXiv:2302.12741 [math.CO], 2023.
- Marilena Barnabei, Flavio Bonetti, Niccolò Castronuovo, and Matteo Silimbani, Consecutive patterns in restricted permutations and involutions, arXiv:1902.02213 [math.CO], 2019.
-
G:=(1-t*z^2-z-z^2-sqrt(1-2*t*z^2-2*z-z^2+t^2*z^4-2*t*z^3-2*z^4*t+2*z^3+z^4))/2/z^2: Gser:=simplify(series(G,z=0,18)): for n from 1 to 15 do P[n]:=coeff(Gser,z^n) od: for n from 1 to 15 do seq(coeff(P[n],t^j),j=1..ceil(n/2)) od; # yields sequence in triangular form
# second Maple program:
b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, t,
b(x-1, y+1, z)+expand(b(x-1, y-1, 1)*t)+b(x-1, y, z)))
end:
T:= n-> (p-> seq(coeff(p, z, i), i=1..degree(p)))(b(n, 0, 1)):
seq(T(n), n=1..14); # Alois P. Heinz, Nov 16 2019
-
b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x==0, t,
b[x-1, y+1, z] + Expand[b[x-1, y-1, 1]*t] + b[x-1, y, z]]];
T[n_] := CoefficientList[b[n, 0, 1]/z, z];
Array[T, 14] // Flatten (* Jean-François Alcover, Feb 14 2021, after Alois P. Heinz *)
A114691
Triangle read by rows: T(n,k) is the number of hill-free Schroeder paths of length 2n that have k weak ascents (1<=k<=n-1 for n>=2; k=1 for n=1). A Schroeder path of length 2n is a lattice path from (0,0) to (2n,0) consisting of U=(1,1), D=(1,-1) and H=(2,0) steps and never going below the x-axis. A hill is a peak at height 1. A weak ascent in a Schroeder path is a maximal sequence of consecutive U and H steps.
Original entry on oeis.org
1, 3, 7, 4, 15, 26, 4, 31, 108, 54, 4, 63, 366, 380, 90, 4, 127, 1104, 1950, 960, 134, 4, 255, 3090, 8284, 6966, 2008, 186, 4, 511, 8212, 31030, 39780, 19550, 3716, 246, 4, 1023, 21014, 106252, 192802, 144472, 46670, 6308, 314, 4, 2047, 52248, 340190
Offset: 1
T(3,2)=4 because we have (UH)D(H),(UU)DD(H),(UU)D(H)D and (UU)D(U)DD, where U=(1,1), D=(1,-1) and H=(2,0) (the weak ascents are shown between parentheses).
Triangle starts:
1;
3;
7,4;
15,26,4;
31,108,54,4;
-
H:=(1-z*t-2*z-sqrt(1-2*z*t-4*z+z^2*t^2-4*z^2*t+4*z^2))/2/z: G:=z*(t+H)/(1-z-z*H): Gser:=simplify(series(G,z=0,15)): for n from 1 to 11 do P[n]:=coeff(Gser,z^n) od: 1; for n from 2 to 11 do seq(coeff(P[n],t^j),j=1..n-1) od; # yields sequence in triangular form
Showing 1-3 of 3 results.
Comments