cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A240674 Number of partitions p of n that are disjoint from their conjugate.

Original entry on oeis.org

1, 0, 2, 2, 2, 2, 4, 4, 8, 10, 10, 14, 18, 18, 26, 30, 36, 44, 60, 64, 82, 96, 114, 130, 164, 176, 222, 248, 296, 338, 406, 450, 550, 620, 726, 816, 968, 1074, 1270, 1418, 1648, 1836, 2150, 2382, 2758, 3080, 3534, 3942, 4538, 5034, 5778, 6416, 7312, 8136, 9258
Offset: 0

Views

Author

Clark Kimberling, Apr 12 2014

Keywords

Comments

First column of the array at A240181.

Examples

			a(6) counts these 4 partitions:  6, 33, 222, 111111, of which the respective conjugates are 111111, 222, 33, 6.
		

Crossrefs

Programs

  • Mathematica
    z = 30; p[n_, k_] := p[n, k] = IntegerPartitions[n][[k]]; c[p_] := c[p] = Table[Count[#, ?(# >= i &)], {i, First[#]}] &[p]; b[n] := b[n] = Table[Intersection[p[n, k], c[p[n, k]]], {k, 1, PartitionsP[n]}]; Table[Count[Map[Length, b[n]], 0], {n, 1, z}] (* this sequence *)
    Table[Count[Map[Length, b[n]], 1], {n, 1, z}]   (* A240675 *)

Formula

a(n) = 2*A114701(n), for n >= 1.

Extensions

Name corrected by Clark Kimberling, Sep 28 2023
a(0)=1 prepended by Alois P. Heinz, Jul 19 2024

A374782 Number of partitions of n that do not have a fixed point that is also a fixed point of the conjugate partition.

Original entry on oeis.org

1, 0, 2, 3, 4, 5, 8, 11, 17, 23, 33, 43, 60, 77, 104, 134, 177, 226, 295, 373, 480, 604, 766, 957, 1204, 1492, 1860, 2294, 2836, 3477, 4273, 5209, 6362, 7721, 9375, 11326, 13687, 16460, 19799, 23720, 28406, 33901, 40443, 48092, 57159, 67747, 80237, 94799
Offset: 0

Views

Author

Alois P. Heinz, Jul 19 2024

Keywords

Examples

			a(0) = 1: the empty partition.
a(2) = 2: 2, 11.
a(3) = 3: 3, 21, 111.
a(4) = 4: 4, 31, 211, 1111.
a(5) = 5: 5, 41, 311, 2111, 11111.
a(6) = 8: 6, 33, 51, 222, 411, 3111, 21111, 111111.
a(7) = 11: 7, 43, 61, 322, 331, 511, 2221, 4111, 31111, 211111, 1111111.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0, 1,
         `if`(i<1, 0, b(n, i-1, p)+add(`if`(i=p+j, 0,
          b(n-i*j, min(n-i*j, i-1), p+j)), j=1..n/i)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..47);

Formula

a(n) = A000041(n) - A188674(n) for n > 0, a(0) = 1.
Showing 1-2 of 2 results.