cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114856 Indices n of ("bad") Gram points g(n) for which (-1)^n Z(g(n)) < 0, where Z(t) is the Riemann-Siegel Z-function.

Original entry on oeis.org

126, 134, 195, 211, 232, 254, 288, 367, 377, 379, 397, 400, 461, 507, 518, 529, 567, 578, 595, 618, 626, 637, 654, 668, 692, 694, 703, 715, 728, 766, 777, 793, 795, 807, 819, 848, 857, 869, 887, 964, 992, 995, 1016, 1028, 1034, 1043, 1046, 1071, 1086
Offset: 1

Views

Author

Eric W. Weisstein, Jan 02 2006

Keywords

Examples

			(-1)^126 Z(g(126)) = -0.0276294988571999.... - _David Baugh_, Apr 02 2008
		

Crossrefs

Programs

  • Mathematica
    g[n_] := (g0 /. FindRoot[ RiemannSiegelTheta[g0] == Pi*n, {g0, 2*Pi*Exp[1 + ProductLog[(8*n + 1)/(8*E)]]}, WorkingPrecision -> 16]); Reap[For[n = 1, n < 1100, n++, If[(-1)^n*RiemannSiegelZ[g[n]] < 0, Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Oct 17 2012, after Eric W. Weisstein *)
  • PARI
    g0(n)=2*Pi*exp(1+lambertw((8*n+1)/exp(1)/8)) \\ approximate location of gram(n)
    th(t)=arg(gamma(1/4+I*t/2))-log(Pi)*t/2 \\ theta, but off by some integer multiple of 2*Pi
    thapprox(t)=log(t/2/Pi)*t/2-t/2-Pi/8+1/48/t-1/5760/t^3
    RStheta(t)=my(T=th(t)); (thapprox(t)-T)\/(2*Pi)*2*Pi+T
    gram(n)=my(G=g0(n), k=n*Pi); solve(x=G-.003, G+1e-8, RStheta(x)-k)
    Z(t)=exp(th(t)*I)*zeta(1/2+I*t)
    is(n)=my(G=gram(n));real((-1)^n*Z(G))<0 \\ Charles R Greathouse IV, Jan 22 2022

Formula

Trudgian shows that a(n) = O(n), that is, there exists some k such that a(n) <= k*n. - Charles R Greathouse IV, Aug 29 2012
In fact Trudgian shows that a(n) ≍ n, and further, there exist constants 1 < b < c such that b*n < a(n) < c*n. (See the paper's discussion of the Weak Gram Law.) - Charles R Greathouse IV, Mar 28 2023

Extensions

Definition corrected by David Baugh, Apr 02 2008