cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114869 s(n) = floor(n^(n/5)/n!!!!!).

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 6, 5, 5, 7, 10, 16, 12, 14, 18, 26, 39, 31, 35, 45, 64, 98, 79, 88, 114, 163, 249, 200, 223, 291, 416, 636, 511, 572, 745, 1067, 1634, 1316, 1474, 1922, 2755, 4222, 3405, 3817, 4982, 7147, 10961, 8848, 9925, 12966
Offset: 1

Views

Author

Jonathan Vos Post, Feb 20 2006

Keywords

Comments

This sequence is an approximation of a quintuple factorial analog to Stirling's approximation to factorial. Note that a(n) is exact for n = 1, 5, 10.

Examples

			a(10) = floor(10^2/10!!!!!) = floor(10^2/50) = floor(2) = 2.
a(15) = floor(15^3/15!!!!!) = floor((15^3)/750) = floor(4.5) = 4.
a(20) = floor(20^4/20!!!!!) = floor((20^4)/15000) = floor(10.6666667) = 10.
a(25) = floor(25^5/25!!!!!) = floor((25^5)/375000) = floor(26.0416667) = 26.
a(30) = floor(30^6/30!!!!!) = floor((30^6)/11250000) = floor(64.8) = 64.
a(35) = floor(35^7/35!!!!!) = floor((35^7)/393750000) = floor(163.401389) = 163.
		

Crossrefs

Programs

  • Mathematica
    fac[n_Integer, m_Integer] := Block[{t = n, f = Max[1, n]}, While[t > m, t -= m; f *= t]; f]; a[n_] := Floor[n^(n/5)/fac[n, 5]]; Array[a, 65] (* Giovanni Resta, Jun 15 2016 *)

Formula

a(n) = floor(n^(n/5)/n!!!). a(n) = floor((A000312(n)^(1/5))/A085157(n)).

Extensions

Corrected and extended by Giovanni Resta, Jun 15 2016