cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A252244 Decimal expansion of zeta''(1/2) (negated).

Original entry on oeis.org

1, 6, 0, 0, 8, 3, 5, 7, 0, 1, 3, 9, 2, 8, 6, 6, 1, 4, 2, 2, 6, 9, 1, 3, 0, 6, 5, 0, 5, 9, 4, 4, 9, 6, 2, 7, 8, 5, 1, 8, 5, 5, 9, 3, 6, 1, 9, 6, 3, 6, 3, 5, 4, 5, 3, 5, 3, 0, 9, 2, 9, 5, 7, 5, 3, 6, 6, 7, 8, 0, 9, 2, 4, 6, 0, 1, 4, 4, 9, 8, 0, 1, 3, 3, 8, 0, 6, 8, 0, 6, 2, 7, 6, 3, 5, 6, 3, 8, 8, 5, 5, 4, 8, 4, 9
Offset: 2

Views

Author

Jean-François Alcover, Dec 16 2014

Keywords

Examples

			-16.0083570139286614226913065059449627851855936196363545353...
		

Crossrefs

Programs

  • Maple
    Zeta(2,1/2) ; evalf(%) ;
  • Mathematica
    RealDigits[Zeta''[1/2], 10, 105] // First

Formula

zeta(3) = (1/7)*(-Pi^3/4 + (2*zeta'(1/2)^3 - 3*zeta(1/2)*zeta'(1/2)*zeta''(1/2) + zeta(1/2)^2*zeta'''(1/2))/zeta(1/2)^3).

A252245 Decimal expansion of zeta'''(1/2) (negated).

Original entry on oeis.org

9, 6, 0, 0, 3, 3, 0, 9, 2, 4, 5, 3, 1, 9, 0, 7, 0, 0, 9, 7, 3, 8, 9, 7, 6, 7, 2, 2, 0, 6, 9, 5, 4, 5, 9, 3, 0, 2, 5, 1, 4, 0, 1, 8, 8, 4, 6, 5, 5, 5, 7, 2, 8, 0, 5, 4, 2, 9, 9, 9, 0, 8, 0, 6, 5, 6, 7, 0, 9, 1, 9, 4, 4, 1, 8, 7, 6, 3, 1, 6, 0, 3, 4, 0, 6, 5, 5, 6, 9, 3, 2, 4, 6, 2, 3, 8, 8, 1, 1, 2, 0, 1, 0, 1
Offset: 2

Views

Author

Jean-François Alcover, Dec 16 2014

Keywords

Examples

			-96.003309245319070097389767220695459302514018846555728...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Zeta'''[1/2], 10, 104] // First

Formula

zeta(3) = (1/7)*(-Pi^3/4 + (2*zeta'(1/2)^3 - 3*zeta(1/2)*zeta'(1/2)*zeta''(1/2) + zeta(1/2)^2*zeta'''(1/2))/zeta(1/2)^3).

A271854 Decimal expansion of -zeta'(-1/2), negated derivative of the Riemann zeta function at -1/2.

Original entry on oeis.org

3, 6, 0, 8, 5, 4, 3, 3, 9, 5, 9, 9, 9, 4, 7, 6, 0, 7, 3, 4, 7, 4, 2, 0, 8, 0, 6, 3, 6, 3, 9, 5, 1, 0, 6, 5, 8, 8, 4, 8, 5, 2, 7, 8, 7, 9, 1, 8, 6, 3, 2, 2, 1, 0, 8, 1, 4, 3, 7, 6, 2, 8, 1, 2, 7, 5, 8, 0, 8, 1, 0, 6, 1, 2, 6, 6, 5, 6, 5, 1, 0, 3, 0, 9, 5, 7, 3, 3, 0, 8, 5, 0, 8, 3, 0, 9, 1, 6, 0, 2, 8, 5, 0, 8, 1
Offset: 0

Views

Author

Stanislav Sykora, Apr 23 2016

Keywords

Examples

			zeta'(-1/2) = -0.36085433959994760734742080636395106588485278791863221...
		

Crossrefs

Values of |zeta'(x)| for various x: A073002 (+2), A075700 (0), A084448 (-1), A114875 (+1/2), A240966 (-2), A244115(+3), A259068 (-3), A259069 (-4), A259070 (-5), A259071 (-6), A259072 (-7), A259073 (-8), A261506 (+4), A266260 (-9), A266261 (-10), A266262 (zeta'(-11)), A266263 (zeta'(-12)), A260660 (zeta'(-13)), A266264 (zeta'(-14)), A266270 (zeta'(-15)), A266271 (zeta'(-16)), A266272 (zeta'(-17)), A266273 (zeta'(-18)), A266274 (zeta'(-19)), A266275 (zeta'(-20)), A271521 (i).

Programs

  • Mathematica
    RealDigits[N[-Zeta'[-1/2], 106]] [[1]] (* Robert Price, Apr 28 2016 *)
  • PARI
    -zeta'(-1/2)

A256591 Decimal expansion of Xi''(1/2) = 0.02297..., the second derivative of the Riemann Xi function at 1/2.

Original entry on oeis.org

0, 2, 2, 9, 7, 1, 9, 4, 4, 3, 1, 5, 1, 4, 5, 4, 3, 7, 5, 3, 5, 2, 4, 9, 8, 7, 6, 4, 9, 7, 6, 3, 2, 1, 7, 0, 2, 6, 4, 5, 9, 3, 0, 1, 3, 8, 3, 7, 5, 8, 9, 0, 6, 3, 4, 9, 9, 1, 4, 4, 6, 2, 2, 1, 6, 5, 1, 8, 3, 6, 3, 1, 8, 5, 8, 8, 9, 2, 5, 5, 3, 8, 0, 9, 6, 7, 0, 2, 2, 7, 6, 7, 1, 2, 1, 4, 1, 7, 8, 0, 3, 2, 3
Offset: 0

Views

Author

Jean-François Alcover, Apr 03 2015

Keywords

Comments

As mentioned in the paper by Borwein et al., the Riemann hypothesis is equivalent to a positivity condition on every even-order derivative of the Xi function at the point s = 1/2.

Examples

			0.022971944315145437535249876497632170264593013837589...
Are also listed in the Borwein paper the Xi derivatives of order 4 and 6:
Xi^(4)(1/2) = 0.002962848433687632165368...
Xi^(6)(1/2) = 0.000599295946597579491843...
		

References

  • H. M. Edwards, Riemann's Zeta Function, Dover Publications, New York, 1974 (ISBN 978-0-486-41740-0) pp. 16-18

Crossrefs

Cf. A020777 (PolyGamma(1/4)), A059750 (zeta(1/2)), A068466 (Gamma(1/4)), A114720 (Xi(1/2)), A114875 (zeta'(1/2)), A252244 (zeta''(1/2)).

Programs

  • Mathematica
    d2 = (-(32*Pi^(1/4))^(-1))*Gamma[1/4]*((-32 + (Log[Pi] - PolyGamma[1/4])^2 + PolyGamma[1, 1/4])*Zeta[1/2] + 4*((-Log[Pi] + PolyGamma[1/4])*Zeta'[1/2] + Zeta''[1/2])); Join[{0}, First[RealDigits[d2, 10, 102]]]

Formula

Xi(s) = 1/2*s*(s-1)*Pi^(-s/2)*Gamma(s/2)*zeta(s).
Xi''(1/2) = (-(32*Pi^(1/4))^(-1))*Gamma(1/4)*((-32 + (log(Pi) - PolyGamma(1/4))^2 + PolyGamma(1, 1/4))*zeta(1/2) + 4*((-log(Pi) + PolyGamma(1/4))*zeta'(1/2) + zeta''(1/2))).
Showing 1-4 of 4 results.