cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114900 Number of compositions of n such that no two adjacent parts are equal, allowing 0.

Original entry on oeis.org

2, 4, 8, 24, 60, 152, 400, 1032, 2656, 6876, 17776, 45912, 118664, 306680, 792480, 2047984, 5292564, 13677160, 35345112, 91340568, 236046088, 610000528, 1576390448, 4073776744, 10527631456, 27205966108, 70306845872, 181690021616, 469531293752, 1213383282936
Offset: 0

Views

Author

Christian G. Bower, Jan 05 2006

Keywords

Examples

			The 8 compositions of 2 are 2, 2+0, 1+0+1, 1+0+1+0, 0+2, 0+2+0, 0+1+0+1, 0+1+0+1+0.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, `if`(i=0, 1, 2),
          add(`if`(i=j, 0, b(n-j, `if`(j>n-j, -1, j))), j=0..n))
        end:
    a:= n-> b(n, -1):
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 04 2015
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, If[i==0, 1, 2], Sum[If[i==j, 0, b[n-j, If[j > n-j, -1, j]]], {j, 0, n}]]; a[n_] := b[n, -1]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 08 2017, after Alois P. Heinz *)

Formula

G.f.: 2*B(x)/(2-B(x)) where B(x) is g.f. of A003242.

Extensions

Replaced broken link, Vaclav Kotesovec, May 01 2014