A114900 Number of compositions of n such that no two adjacent parts are equal, allowing 0.
2, 4, 8, 24, 60, 152, 400, 1032, 2656, 6876, 17776, 45912, 118664, 306680, 792480, 2047984, 5292564, 13677160, 35345112, 91340568, 236046088, 610000528, 1576390448, 4073776744, 10527631456, 27205966108, 70306845872, 181690021616, 469531293752, 1213383282936
Offset: 0
Keywords
Examples
The 8 compositions of 2 are 2, 2+0, 1+0+1, 1+0+1+0, 0+2, 0+2+0, 0+1+0+1, 0+1+0+1+0.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- A. Knopfmacher and H. Prodinger, On Carlitz compositions, European Journal of Combinatorics, Vol. 19, No. 5, Jul 1998, pp. 579-589.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, `if`(i=0, 1, 2), add(`if`(i=j, 0, b(n-j, `if`(j>n-j, -1, j))), j=0..n)) end: a:= n-> b(n, -1): seq(a(n), n=0..30); # Alois P. Heinz, Sep 04 2015
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0, If[i==0, 1, 2], Sum[If[i==j, 0, b[n-j, If[j > n-j, -1, j]]], {j, 0, n}]]; a[n_] := b[n, -1]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 08 2017, after Alois P. Heinz *)
Formula
G.f.: 2*B(x)/(2-B(x)) where B(x) is g.f. of A003242.
Extensions
Replaced broken link, Vaclav Kotesovec, May 01 2014