A114902 Number of compositions of {1,..,n} such that no two adjacent parts are of equal size (labeled Carlitz compositions).
1, 1, 1, 7, 21, 81, 793, 4929, 33029, 388537, 3751311, 37585989, 523395777, 6814401361, 90789460427, 1486639926417, 24213653736389, 403184436319401, 7665459211898263, 149067938821523349, 2971265450045056871, 64800464138121854877, 1460876941168812354947
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..450
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, add(`if`(i=j, 0, b(n-j, `if`(j>n-j, 0, j)) *binomial(n, j)), j=1..n)) end: a:= n-> b(n, 0): seq(a(n), n=0..25); # Alois P. Heinz, Sep 04 2015
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0, 1, Sum[If[i==j, 0, b[n-j, If[j>n-j, 0, j]]* Binomial[n, j]], {j, 1, n}]]; a[n_] := b[n, 0]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 20 2017, after Alois P. Heinz *)
Formula
a(n) ~ c * d^n * n^(n + 1/2), where d = 0.37565358657373546999489873158654700..., c = 2.0427954030382239202983023897265... - Vaclav Kotesovec, Sep 21 2019