cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114903 Number of compositions of {1,..,n} such that no two adjacent parts are of equal size (labeled Carlitz compositions), allowing parts to be of size 0.

Original entry on oeis.org

2, 4, 12, 76, 572, 5204, 59340, 782996, 11707324, 197988340, 3720933092, 76811352116, 1730660689580, 42251140165108, 1110607948991028, 31279537587370916, 939737174809843644, 29996522608581396788, 1013814287146517455812, 36168456215193554061044
Offset: 0

Views

Author

Christian G. Bower, Jan 05 2006

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember;
          `if`(n=0, `if`(i=0, 1, 2), add(`if`(i=j, 0, b(n-j,
          `if`(j>n-j, -1, j))*binomial(n, j)), j=0..n))
        end:
    a:= n-> b(n, -1):
    seq(a(n), n=0..25);  # Alois P. Heinz, Sep 04 2015
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, If[i == 0, 1, 2], Sum[If[i == j, 0, b[n - j, If[j > n - j, -1, j]]*Binomial[n, j]], {j, 0, n}]]; a[n_] := b[n, -1]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 25 2017, after Alois P. Heinz *)

Formula

E.g.f.: 2*B(x)/(2-B(x)) where B(x) is e.g.f. of A114902.
a(n) ~ c * d^n * n^(n + 1/2), where d = 0.6907524084725166379194613015033714490019226066943600905783847741049876032..., c = 4.71633079866926561049991146534865892961540468329142429184529629611133729... - Vaclav Kotesovec, Sep 21 2019