A114950 a(n) = a(n-1)^4 + a(n-2)^2, with a(0) = a(1) = 1.
1, 1, 2, 17, 83525, 48670514501156640914, 5611303368570568119463158581109807779153712597124269146443734128560476495542441
Offset: 0
Examples
a(2) = a(1)^4 + a(0)^2 = 1^4 + 1^2 = 2. a(3) = a(2)^4 + a(1)^2 = 2^4 + 1^2 = 17. a(4) = a(3)^4 + a(2)^2 = 17^4 + 2^2 = 83525. a(5) = a(4)^4 + a(3)^2 = 83525^4 + 17^2 = 48670514501156640914.
Programs
-
Mathematica
RecurrenceTable[{a[0] ==1, a[1] == 1, a[n] == a[n-1]^4 + a[n-2]^2}, a, {n, 0, 8}] (* Vaclav Kotesovec, Dec 18 2014 *)
Formula
a(n) ~ c^(4^n), where c = 1.045263645117629170027922399491730015846213509999461317320720034161754262379... . - Vaclav Kotesovec, Dec 18 2014
Extensions
Formula corrected by Vaclav Kotesovec, Dec 18 2014
Missing a(3) added from Vaclav Kotesovec, Dec 18 2014
Comments