cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115000 a(n) = J_2(n) / 24.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 5, 4, 7, 6, 8, 8, 12, 9, 15, 12, 16, 15, 22, 16, 25, 21, 27, 24, 35, 24, 40, 32, 40, 36, 48, 36, 57, 45, 56, 48, 70, 48, 77, 60, 72, 66, 92, 64, 98, 75, 96, 84, 117, 81, 120, 96, 120, 105, 145, 96, 155, 120, 144, 128, 168, 120, 187, 144, 176, 144, 210, 144
Offset: 5

Views

Author

Keywords

Comments

The Jordan function J_m(n) can be defined as multiplicative with J_m(p^e) = (p^m-1)*p^(m*(e-1)). Cf. A059379.
Looking at the sequences J_m(n) for fixed m, one is struck by the fact that all but a few early terms have a common factor, given in A079612. I will refer to this sequence as K(n), following the notation in the paper by Vaughan and Wooley. (The alternate lambda^*(n) in the comment for A006863 is too awkward.)
In fact, K(m) not only divides J_m(n) for all but finitely many n; it also divides Sum_{k=1..n} J_m(k) for all but finitely many n.
J_1(n) = phi(n) and phi(n)/2 and Sum_{k=1..n} phi(n)/2 are A023022 and A046657.
The weight of the n-th elliptic division polynomial -- the analog of cyclotomic polynomials for elliptic divisibility sequences. That is, let e1 = b1, e2 = b2*b1, e3 = b3*b1, e4 = b2*b4*b1, e5 = (b2^4*b4 - b3^3)*b1 = b5*e1 and so on be an elliptic divisibility sequence. Let c2 = b2^4*b4, c3 = b3^3, c4 = b4^2 and cn = bn for n>4. Then c5 = c2 - c3, c6 = c5 - c4, c7 = c6*c3 - c5*c4 and so on. Let the weight of c2, c3, c4 each be 1 and weight of a product is sum of the weights of the factors. The weight of cn is a(n) for n>4. - Michael Somos, Aug 12 2008

Examples

			G.f.: x^5 + x^6 + 2*x^7 + 2*x^8 + 3*x^9 + 3*x^10 + 5*x^11 + 4*x^12 + 7*x^13 + ...
		

Crossrefs

Cf. A007434.

Programs

  • Magma
    function a(n) return n lt 5 select 0 else Dimension( ModularForms( Gamma1(n), 2)) - Dimension( ModularForms( Gamma1(n), 1)); end function; /* Michael Somos, Aug 05 2014 */
  • Mathematica
    a[n_] := DivisorSum[n, #^2*MoebiusMu[n/#]&]/24; Table[a[n], {n, 5, 80}] (* Jean-François Alcover, Dec 07 2015, adapted from PARI *)
  • PARI
    {a(n) = if( n<5, 0, sumdiv(n, d, d^2 * moebius(n / d)) / 24)}; /* Michael Somos, Aug 12 2008 */
    

Formula

A007434(n) = 24 * a(n) unless n<5. - Michael Somos, Aug 12 2008

Extensions

More terms from Michael Somos, Aug 12 2008