cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115017 a(n) = largest triangular number dividing n.

Original entry on oeis.org

1, 1, 3, 1, 1, 6, 1, 1, 3, 10, 1, 6, 1, 1, 15, 1, 1, 6, 1, 10, 21, 1, 1, 6, 1, 1, 3, 28, 1, 15, 1, 1, 3, 1, 1, 36, 1, 1, 3, 10, 1, 21, 1, 1, 45, 1, 1, 6, 1, 10, 3, 1, 1, 6, 55, 28, 3, 1, 1, 15, 1, 1, 21, 1, 1, 66, 1, 1, 3, 10, 1, 36, 1, 1, 15, 1, 1, 78, 1, 10, 3, 1, 1, 28, 1, 1, 3, 1, 1, 45, 91, 1, 3, 1
Offset: 1

Views

Author

Leroy Quet, Feb 23 2006

Keywords

Examples

			a(12) = 6 because the triangular numbers dividing 12 are 1, 3 and 6.
		

Crossrefs

Programs

  • Maple
    a:=proc(n) local P,j; P:={}: for j from 1 to n do if type(n/(j*(j+1)/2),integer)=true then P:=P union {j*(j+1)/2} else P:=P: fi od: P[nops(P)]; end: seq(a(n),n=1..105); # Emeric Deutsch, Mar 01 2006
  • Mathematica
    With[{trnos=Accumulate[Range[100]]},Table[Last[Select[trnos,Divisible[ n,#]&]],{n,100}]] (* Harvey P. Dale, Nov 08 2011 *)
    a[n_] := Module[{d = Divisors[2*n], nd, m}, nd = Floor[Length[d]/2]; m = Max[Intersection[d[[1 ;; nd]] + 1, d]]; m*(m-1)/2]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Jun 25 2025 *)

Formula

a(n) = A083312(n) * (A083312(n) + 1)/2.

Extensions

More terms from Emeric Deutsch, Mar 01 2006