A115017 a(n) = largest triangular number dividing n.
1, 1, 3, 1, 1, 6, 1, 1, 3, 10, 1, 6, 1, 1, 15, 1, 1, 6, 1, 10, 21, 1, 1, 6, 1, 1, 3, 28, 1, 15, 1, 1, 3, 1, 1, 36, 1, 1, 3, 10, 1, 21, 1, 1, 45, 1, 1, 6, 1, 10, 3, 1, 1, 6, 55, 28, 3, 1, 1, 15, 1, 1, 21, 1, 1, 66, 1, 1, 3, 10, 1, 36, 1, 1, 15, 1, 1, 78, 1, 10, 3, 1, 1, 28, 1, 1, 3, 1, 1, 45, 91, 1, 3, 1
Offset: 1
Keywords
Examples
a(12) = 6 because the triangular numbers dividing 12 are 1, 3 and 6.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harvey P. Dale)
Programs
-
Maple
a:=proc(n) local P,j; P:={}: for j from 1 to n do if type(n/(j*(j+1)/2),integer)=true then P:=P union {j*(j+1)/2} else P:=P: fi od: P[nops(P)]; end: seq(a(n),n=1..105); # Emeric Deutsch, Mar 01 2006
-
Mathematica
With[{trnos=Accumulate[Range[100]]},Table[Last[Select[trnos,Divisible[ n,#]&]],{n,100}]] (* Harvey P. Dale, Nov 08 2011 *) a[n_] := Module[{d = Divisors[2*n], nd, m}, nd = Floor[Length[d]/2]; m = Max[Intersection[d[[1 ;; nd]] + 1, d]]; m*(m-1)/2]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Jun 25 2025 *)
Extensions
More terms from Emeric Deutsch, Mar 01 2006