A115054 G.f.: (x^3+6*x+2)^2/(x^2+x+1)^2.
4, 16, -8, -36, 72, -36, -63, 126, -63, -90, 180, -90, -117, 234, -117, -144, 288, -144, -171, 342, -171, -198, 396, -198, -225, 450, -225, -252, 504, -252, -279, 558, -279, -306, 612, -306, -333, 666, -333, -360, 720, -360, -387, 774, -387, -414, 828, -414, -441, 882, -441, -468, 936, -468, -495, 990, -495
Offset: 0
References
- Peitgen and Richter, The Beauty of Fractals, Springer-Verlag, New York, 1986, page 146
Links
- Index entries for linear recurrences with constant coefficients, signature (-2,-3,-2,-1).
Programs
-
Maple
G:=(x^3+6*x+2)^2/(x^2+x+1)^2: Gser:=series(G,x=0,55): seq(coeff(Gser,x,n),n=0..50);
-
Mathematica
q=3 b = 9*Flatten[{{4/9}, Abs[Table[Coefficient[ Series[((x^3 + 3*(q - 1)*x + (q - 1)*(q - 2))/(3*x^2 + 3*( q - 2)*x + q^2 - 3*q + 3))^2, {x, 0, 30}], x^n], {n, 1, 30}]]}]
Formula
Extensions
Edited by N. J. A. Sloane, Apr 16 2006
Comments