cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115075 Number of 2 X 2 symmetric matrices over Z(n) having determinant 0.

Original entry on oeis.org

1, 4, 9, 20, 25, 36, 49, 80, 99, 100, 121, 180, 169, 196, 225, 352, 289, 396, 361, 500, 441, 484, 529, 720, 725, 676, 891, 980, 841, 900, 961, 1408, 1089, 1156, 1225, 1980, 1369, 1444, 1521, 2000, 1681, 1764, 1849, 2420, 2475, 2116, 2209, 3168, 2695, 2900
Offset: 1

Views

Author

T. D. Noe, Jan 12 2006

Keywords

Crossrefs

Cf. A020478 (number of singular 2 X 2 matrices over Z(n)), A115077.

Programs

  • Mathematica
    Table[cnt=0; Do[m={{a, b}, {b, c}}; If[Det[m, Modulus->n]==0, cnt++ ], {a, 0, n-1}, {b, 0, n-1}, {c, 0, n-1}]; cnt, {n, 50}]
    f[p_, e_] := p^e*(p^e + p^(e-1) - p^(Ceiling[e/2] - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]  (* Amiram Eldar, Oct 31 2023 *)
  • PARI
    a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; p^e*(p^e + p^(e-1) - p^((e+1)\2 - 1)));} \\ Amiram Eldar, Oct 31 2023

Formula

a(n) = n^3 - A115077(n).
For squarefree n, a(n) = n^2.
Multiplicative with a(p^e) = p^(e)*(p^(e)+p^(e-1)-p^(ceiling(e/2)-1)).
From Amiram Eldar, Oct 31 2023: (Start)
Dirichlet g.f.: zeta(s-2) * zeta(2*s-3) / zeta(2*s-2).
Sum_{k=1..n} a(k) ~ (zeta(3)/(3*zeta(4))) * n^3. (End)