A115075 Number of 2 X 2 symmetric matrices over Z(n) having determinant 0.
1, 4, 9, 20, 25, 36, 49, 80, 99, 100, 121, 180, 169, 196, 225, 352, 289, 396, 361, 500, 441, 484, 529, 720, 725, 676, 891, 980, 841, 900, 961, 1408, 1089, 1156, 1225, 1980, 1369, 1444, 1521, 2000, 1681, 1764, 1849, 2420, 2475, 2116, 2209, 3168, 2695, 2900
Offset: 1
Programs
-
Mathematica
Table[cnt=0; Do[m={{a, b}, {b, c}}; If[Det[m, Modulus->n]==0, cnt++ ], {a, 0, n-1}, {b, 0, n-1}, {c, 0, n-1}]; cnt, {n, 50}] f[p_, e_] := p^e*(p^e + p^(e-1) - p^(Ceiling[e/2] - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 31 2023 *)
-
PARI
a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; p^e*(p^e + p^(e-1) - p^((e+1)\2 - 1)));} \\ Amiram Eldar, Oct 31 2023
Formula
a(n) = n^3 - A115077(n).
For squarefree n, a(n) = n^2.
Multiplicative with a(p^e) = p^(e)*(p^(e)+p^(e-1)-p^(ceiling(e/2)-1)).
From Amiram Eldar, Oct 31 2023: (Start)
Dirichlet g.f.: zeta(s-2) * zeta(2*s-3) / zeta(2*s-2).
Sum_{k=1..n} a(k) ~ (zeta(3)/(3*zeta(4))) * n^3. (End)