A115077 Number of 2 X 2 symmetric matrices over Z(n) having nonzero determinant.
0, 4, 18, 44, 100, 180, 294, 432, 630, 900, 1210, 1548, 2028, 2548, 3150, 3744, 4624, 5436, 6498, 7500, 8820, 10164, 11638, 13104, 14900, 16900, 18792, 20972, 23548, 26100, 28830, 31360, 34848, 38148, 41650, 44676, 49284, 53428, 57798, 62000
Offset: 1
Programs
-
Mathematica
Table[cnt=0; Do[m={{a, b}, {b, c}}; If[Det[m, Modulus->n]>0, cnt++ ], {a, 0, n-1}, {b, 0, n-1}, {c, 0, n-1}]; cnt, {n, 50}] f[p_, e_] := p^e*(p^e + p^(e-1) - p^(Ceiling[e/2] - 1)); a[1] = 0; a[n_] := n^3 - Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 31 2023 *)
-
PARI
a(n) = {my(f = factor(n), p, e); n^3 - prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; p^e*(p^e + p^(e-1) - p^((e+1)\2 - 1)));} \\ Amiram Eldar, Oct 31 2023
Formula
a(n) = n^3 - A115075(n).
For squarefree n, a(n) = (n-1)*n^2.