cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115114 Asymmetric rhythm cycles (patterns): binary necklaces of length 2n subject to the restriction that for any k if the k-th bead is of color 1 then the (k+n)-th bead (modulo 2n) is of color 0.

Original entry on oeis.org

2, 3, 6, 11, 26, 63, 158, 411, 1098, 2955, 8054, 22151, 61322, 170823, 478318, 1345211, 3798242, 10761723, 30585830, 87169619, 249056138, 713205903, 2046590846, 5883948951, 16945772210, 48882035163, 141214768974
Offset: 1

Views

Author

Valery A. Liskovets, Jan 17 2006

Keywords

Examples

			For n=3, the 27=3^3 admissible words are separated into 6 shift-equivalence classes (necklaces) containing, resp., the words 000000, 100000, 110000, 101000, 111000 and 101010. Thus a(3)=6.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[EulerPhi[2d] + Boole[OddQ[d]] EulerPhi[d] 3^(n/d), {d, Divisors[n]}]/(2n);
    Array[a, 27] (* Jean-François Alcover, Aug 29 2019 *)

Formula

a(n) = (Sum_{d|n}phi(2d)+Sum_{d|n, d odd}phi(d)3^(n/d))/(2n), where phi(n) is the Euler function A000010.
a(n) ~ 3^n/(2*n). - Vaclav Kotesovec, Oct 27 2024