cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115117 Number of primitive (aperiodic, or Lyndon) 3-asymmetric rhythm cycles: ones having no nontrivial shift automorphism. 3-asymmetric rhythm cycles (A115115): binary necklaces of length 3n subject to the restriction that for any k if the k-th bead is of color 1 then the (k+n)-th and (k+2n)-th beads (modulo 3n) are of color 0.

Original entry on oeis.org

1, 2, 7, 20, 68, 224, 780, 2720, 9709, 34918, 127100, 465920, 1720740, 6390930, 23860928, 89477120, 336860180, 1272578048, 4822419420, 18325176316, 69810262080, 266548209850, 1019836872140, 3909374443520, 15011998757888
Offset: 1

Views

Author

Valery A. Liskovets, Jan 17 2006

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[MoebiusMu[3d] + Boole[GCD[3, d] == 1] MoebiusMu[d] 4^(n/d), {d, Divisors[n]}]/(3n);
    Array[a, 25] (* Jean-François Alcover, Aug 30 2019 *)
  • PARI
    a(n) = 1/(3*n) * sumdiv(n,d, moebius(3*d) + if(gcd(3,d)==1, moebius(d)*4^(n/d),0) ); \\ Joerg Arndt, Aug 29 2019

Formula

a(n) = (Sum_{d|n} mu(3d) + Sum_{d|n, (3,d)=1} mu(d) 4^(n/d))/(3n), where mu(n) is the Moebius function A008683.
a(n) ~ 4^n / (3*n). - Vaclav Kotesovec, Oct 27 2024