cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115131 Waring numbers for power sums functions in terms of elementary symmetric functions; irregular triangle T(n,k), read by rows, for n >= 1 and 1 <= k <= A000041(n).

Original entry on oeis.org

1, -2, 1, 3, -3, 1, -4, 4, 2, -4, 1, 5, -5, -5, 5, 5, -5, 1, -6, 6, 6, 3, -6, -12, -2, 6, 9, -6, 1, 7, -7, -7, -7, 7, 14, 7, 7, -7, -21, -7, 7, 14, -7, 1, -8, 8, 8, 8, 4, -8, -16, -16, -8, -8, 8, 24, 12, 24, 2, -8, -32, -16, 8, 20, -8, 1, 9, -9, -9, -9, -9, 9, 18, 18, 9, 9, 18, 3, -9, -27, -27, -27, -27, -9, 9, 36, 18, 54, 9, -9, -45, -30, 9, 27, -9, 1
Offset: 1

Views

Author

Wolfdieter Lang, Jan 13 2006

Keywords

Comments

Examples

			First few rows of triangle T(n,k) are as follows (see the link for rows 1..10):
   1;
  -2,  1;
   3, -3,  1;
  -4,  4,  2, -4, 1;
   5, -5, -5,  5, 5, -5, 1;
  ...
n=4: N*t^{(N)}_4 = -4*(sigma_4)^1 + 4*(sigma_1)*(sigma_3) + 2*(sigma_2)^2 -4*(sigma_1)^2*(sigma_2) + 1*(sigma_1)^4.
  (For 2 <= N < 4, one puts sigma_{N+1} = 0 = ... = sigma_4 = 0.) This becomes Sum_{k = 1..N} (x_k)^4 if the sigma functions are written in terms of the variables x_1, x_2, ..., x_N. E.g., for N=2: 0 + 0 + 2*(x_1*x_2)^2 -4*(x_1 + x_2)^2*(x_1*x_2) + 1*(x_1 + x_2)^4 = (x_1)^4 + (x_2)^4.
		

References

  • P. A. MacMahon, Combinatory Analysis, 2 vols., Chelsea, NY, 1960, see p. 5 (with a_k -> sigma_k).

Crossrefs

Cf. A210258 (in another ordering of partitions), A132460 (N=2), A325477 (N=3),
A324602 (N=4).

Formula

T(n,k) = (n/m(n,k))*A111786(n,k) for the k-th partition of n with m(n,k) parts in the Abramowitz-Stegun order for n >= 1 and k = 1..p(n), where p(n) := A000041(n).
Explicitly: T(n,k) = (-1)^(n + m(n,k)) * n * (m(n,k) - 1)!/(Product_{j = 1..n} e(k,j)!), where m(n,k):= Sum_{j = 1..n} e(k,j), with [1^e(k, 1), 2^e(k,2), ..., n^e(k,n)] being the k-th partition of n in the mentioned order. For m(n,k), see A036043.

Extensions

Various sections edited by Petros Hadjicostas, Dec 14 2019