A115147 Eighth convolution of A115140.
1, -8, 20, -16, 2, 0, 0, 0, -1, -8, -44, -208, -910, -3808, -15504, -62016, -245157, -961400, -3749460, -14567280, -56448210, -218349120, -843621600, -3257112960, -12570420330, -48507033744, -187187399448, -722477682080, -2789279908316, -10772391370048
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1670
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (1-8*x+20*x^2-16*x^3+2*x^4 +(1-6*x+10*x^2-4*x^3)*Sqrt(1-4*x))/2 )); // G. C. Greubel, Feb 12 2019 -
Mathematica
CoefficientList[Series[(1-8*x+20*x^2-16*x^3+2*x^4 +(1-6*x+10*x^2-4*x^3) *Sqrt[1-4*x])/2, {x, 0, 30}], x] (* G. C. Greubel, Feb 12 2019 *)
-
PARI
my(x='x+O('x^30)); Vec((1-8*x+20*x^2-16*x^3+2*x^4 +(1-6*x+10*x^2 -4*x^3)*sqrt(1-4*x))/2) \\ G. C. Greubel, Feb 12 2019
-
Sage
((1-8*x+20*x^2-16*x^3+2*x^4 +(1-6*x+10*x^2-4*x^3)*sqrt(1-4*x))/2 ).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 12 2019