A115148 Ninth convolution of A115140.
1, -9, 27, -30, 9, 0, 0, 0, 0, -1, -9, -54, -273, -1260, -5508, -23256, -95931, -389367, -1562275, -6216210, -24582285, -96768360, -379629720, -1485507600, -5801732460, -22626756594, -88152205554, -343176898988, -1335293573130, -5193831553416
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1671
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (1-9*x+27*x^2-30*x^3+9*x^4 +(1-7*x+15*x^2-10*x^3+x^4)*Sqrt(1-4*x))/2 )); // G. C. Greubel, Feb 12 2019 -
Mathematica
CoefficientList[Series[(1-9*x+27*x^2-30*x^3+9*x^4 +(1-7*x+15*x^2-10*x^3 +x^4)*Sqrt[1-4*x])/2, {x, 0, 30}], x] (* G. C. Greubel, Feb 12 2019 *)
-
PARI
my(x='x+O('x^30)); Vec((1-9*x+27*x^2-30*x^3+9*x^4 +(1-7*x+15*x^2 -10*x^3+x^4)*sqrt(1-4*x))/2) \\ G. C. Greubel, Feb 12 2019
-
Sage
((1-9*x+27*x^2-30*x^3+9*x^4 +(1-7*x+15*x^2-10*x^3+x^4) *sqrt(1-4*x))/2).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 12 2019