cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115204 Seventh column of triangle A115193 (called C(1,2)).

Original entry on oeis.org

1, 13, 123, 1037, 8291, 64509, 494595, 3761661, 28486659, 215277565, 1625688067, 12277764093, 92783468547, 701828038653, 5314762113027, 40297495658493, 305941006516227, 2325794003091453, 17704219384479747
Offset: 0

Views

Author

Wolfdieter Lang, Feb 03 2006

Keywords

Comments

Also sixth diagonal of triangle A115195, called Y(1,2), divided by 32.

Crossrefs

Programs

  • Mathematica
    f[n_] := SeriesCoefficient[(1 - 13*x + 46*x^2 - 36*x^3 -(1 - 9*x + 18*x^2 - 4*x^3) Sqrt[1 - 8*x])/(64*x^6*(1 + x)), {x, 0, n}];
    Table[f[n], {n, 0, 50}] (* G. C. Greubel, Feb 04 2016 *)

Formula

a(n) = A115195(5+n,1+n)/32, n>=0.
G.f.: (-1 + 7*x - 8*x^2 + (1- 9*x + 18*x^2 - 4*x^3)*c(2*x))/(16*(1+x)*x^5), with the o.g.f. c(x) of A000108 (Catalan).
G.f. is also: ((1 + 2*x*c(2*x))*(2*x*c(2*x))^6)/(64*(1+x)*x^6).
a(n) = A115193(6+n,6), n>=0.
a(n) = (-1)^n*2^(8+3*n)*(Binomial[1/2, 4 + n]*Hypergeometric2F1[1, 7/2 + n, 5 + n, -8] + 4*(9*Binomial[1/2, 5 + n]*Hypergeometric2F1[1, 9/2 + n, 6 + n, -8] + 36*Binomial[1/2, 6 + n]*Hypergeometric2F1[1, 11/2 + n, 7 + n, -8] + 32*Binomial[1/2, 7 + n]*Hypergeometric2F1[1, 13/2 + n, 8 + n, -8])). - G. C. Greubel, Feb 04 2016
D-finite with recurrence 2*n*(n+6)*a(n) +(-11*n^2-51*n-120)*a(n-1) +(-37*n^2-99*n-132)*a(n-2) -12*(n+1)*(2*n+1)*a(n-3)=0. - R. J. Mathar, Mar 10 2022