cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115224 Number of 3 X 3 symmetric matrices over Z(n) having determinant 1.

Original entry on oeis.org

1, 28, 234, 896, 3100, 6552, 16758, 28672, 56862, 86800, 160930, 209664, 371124, 469224, 725400, 917504, 1419568, 1592136, 2475738, 2777600, 3921372, 4506040, 6435814, 6709248, 9687500, 10391472, 13817466, 15015168, 20510308, 20311200, 28628190, 29360128, 37657620
Offset: 1

Views

Author

T. D. Noe, Jan 16 2006

Keywords

Crossrefs

Cf. A000056 (order of the group SL(2, Z_n)), A011785 (number of 3 X 3 matrices whose determinant is 1 mod n, i.e. order of SL(3, Z_n)).

Programs

  • Mathematica
    Table[cnt=0; Do[m={{a, b, c}, {b, d, e}, {c, e, f}}; If[Det[m, Modulus->n]==1, cnt++ ], {a, 0, n-1}, {b, 0, n-1}, {c, 0, n-1}, {d, 0, n-1}, {e, 0, n-1}, {f, 0, n-1}]; cnt, {n, 2, 20}]
    JordanTotient[n_,k_:1] := DivisorSum[n,#^k*MoebiusMu[n/# ]&]/;(n>0)&&IntegerQ[n]; A115224[n_IntegerQ] := JordanTotient[n^2,3]/n; Table[A115224[n], {n,100}] (* Enrique Pérez Herrero, Sep 14 2010 *)
    f[p_, e_] := (p^3 - 1)*p^(5*e - 3); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Sep 15 2020 *)

Formula

a(1)=1 because the matrix of all zeros has determinant 0, but 0=1 (mod 1).
For prime p, a(p) = (p^3-1)*p^2.
Multiplicative with a(p^e) = (p^3-1)*p^(5e-3).
a(n) = A011785(n)/A000056(n).
a(n) = A059376(n^2)/n. - Enrique Pérez Herrero, Sep 14 2010
a(n) = n^2*A059376(n). Dirichlet g.f.: zeta(s-5)/zeta(s-2). - R. J. Mathar, Feb 27 2011
Sum_{k=1..n} a(k) ~ 15*n^6 / Pi^4. - Vaclav Kotesovec, Feb 07 2019
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^3/(1 - p^3 - p^5 + p^8)) = 1.04172462829914219180789244796430293454403616906393417764614215669994022537... - Vaclav Kotesovec, Sep 20 2020