A115224 Number of 3 X 3 symmetric matrices over Z(n) having determinant 1.
1, 28, 234, 896, 3100, 6552, 16758, 28672, 56862, 86800, 160930, 209664, 371124, 469224, 725400, 917504, 1419568, 1592136, 2475738, 2777600, 3921372, 4506040, 6435814, 6709248, 9687500, 10391472, 13817466, 15015168, 20510308, 20311200, 28628190, 29360128, 37657620
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..4885 from Enrique Pérez Herrero)
Crossrefs
Programs
-
Mathematica
Table[cnt=0; Do[m={{a, b, c}, {b, d, e}, {c, e, f}}; If[Det[m, Modulus->n]==1, cnt++ ], {a, 0, n-1}, {b, 0, n-1}, {c, 0, n-1}, {d, 0, n-1}, {e, 0, n-1}, {f, 0, n-1}]; cnt, {n, 2, 20}] JordanTotient[n_,k_:1] := DivisorSum[n,#^k*MoebiusMu[n/# ]&]/;(n>0)&&IntegerQ[n]; A115224[n_IntegerQ] := JordanTotient[n^2,3]/n; Table[A115224[n], {n,100}] (* Enrique Pérez Herrero, Sep 14 2010 *) f[p_, e_] := (p^3 - 1)*p^(5*e - 3); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Sep 15 2020 *)
Formula
a(1)=1 because the matrix of all zeros has determinant 0, but 0=1 (mod 1).
For prime p, a(p) = (p^3-1)*p^2.
Multiplicative with a(p^e) = (p^3-1)*p^(5e-3).
a(n) = A059376(n^2)/n. - Enrique Pérez Herrero, Sep 14 2010
a(n) = n^2*A059376(n). Dirichlet g.f.: zeta(s-5)/zeta(s-2). - R. J. Mathar, Feb 27 2011
Sum_{k=1..n} a(k) ~ 15*n^6 / Pi^4. - Vaclav Kotesovec, Feb 07 2019
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^3/(1 - p^3 - p^5 + p^8)) = 1.04172462829914219180789244796430293454403616906393417764614215669994022537... - Vaclav Kotesovec, Sep 20 2020