A115223
Number of 3 X 3 symmetric matrices over Z(n) having determinant 0.
Original entry on oeis.org
1, 36, 261, 1408, 3225, 9396, 17101, 47104, 76545, 116100, 162261, 367488, 373321, 615636, 841725, 1638400, 1424481, 2755620, 2482597, 4540800, 4463361, 5841396, 6447981, 12294144, 11640625, 13439556, 18954729, 24078208, 20534697, 30302100
Offset: 1
Cf.
A115221 (number of 3 X 3 matrices over Z(n) having determinant 0).
-
Table[cnt=0; Do[m={{a, b, c}, {b, d, e}, {c, e, f}}; If[Det[m, Modulus->n]==0, cnt++ ], {a, 0, n-1}, {b, 0, n-1}, {c, 0, n-1}, {d, 0, n-1}, {e, 0, n-1}, {f, 0, n-1}]; cnt, {n, 2, 20}]
A115226
Order of the group of invertible 3 X 3 symmetric matrices over Z(n).
Original entry on oeis.org
1, 28, 468, 1792, 12400, 13104, 100548, 114688, 341172, 347200, 1609300, 838656, 4453488, 2815344, 5803200, 7340032, 22713088, 9552816, 44563284, 22220800, 47056464, 45060400, 141587908, 53673984, 193750000, 124697664, 248714388, 180182016, 574288624, 162489600
Offset: 1
-
Table[cnt=0; Do[m={{a, b, c}, {b, d, e}, {c, e, f}}; If[Det[m, Modulus->n]>0 && MatrixQ[Inverse[m, Modulus->n]], cnt++ ], {a, 0, n-1}, {b, 0, n-1}, {c, 0, n-1}, {d, 0, n-1}, {e, 0, n-1}, {f, 0, n-1}]; cnt, {n, 2, 20}]
f[p_, e_] := p^(6*e - 4)*(p^3 - 1)*(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 10 2020 *)
-
a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^(6*f[i,2] - 4)*(f[i,1]^3 - 1)*(f[i,1] - 1));} \\ Amiram Eldar, Nov 05 2022
Showing 1-2 of 2 results.
Comments