A115233 Primes p which have a unique representation as p = 2^i + q^j where i >= 0, j >= 1, q = odd prime.
5, 127, 163, 179, 191, 193, 223, 239, 251, 269, 311, 337, 389, 419, 431, 457, 491, 547, 557, 569, 599, 613, 653, 659, 673, 683, 719, 739, 787, 821, 839, 853, 883, 911, 929, 953, 967, 977, 1117, 1123, 1201, 1229, 1249, 1283, 1289, 1297, 1303, 1327, 1381, 1409, 1423, 1439, 1451, 1471, 1481, 1499
Offset: 1
Keywords
Examples
5 = 2+3 belongs to the sequence, but 23 = 2^2+19^1 = 2^4+7^1 does not.
Programs
-
Mathematica
maxp = 1500; Clear[cnt]; cnt[_] = 0; pp = Prime[Range[PrimePi[maxp]]]; Do[p = 2^i + q^j; If[p <= maxp && PrimeQ[p], cnt[p] = cnt[p] + 1], {i, 0, Log[2, maxp] // Ceiling}, {j, 1, Log[3, maxp] // Ceiling}, {q, Rest[pp]} ]; Select[pp, cnt[#] == 1&] (* Jean-François Alcover, Aug 04 2018 *)
Extensions
Edited by N. J. A. Sloane, Apr 30 2010
Data corrected by Jean-François Alcover, Aug 04 2018