A115241 Square array read by antidiagonals: T(n,p) is the number of linearly independent, homogeneous harmonic polynomials of degree n in p variables (n,p>=1).
1, 2, 0, 3, 2, 0, 4, 5, 2, 0, 5, 9, 7, 2, 0, 6, 14, 16, 9, 2, 0, 7, 20, 30, 25, 11, 2, 0, 8, 27, 50, 55, 36, 13, 2, 0, 9, 35, 77, 105, 91, 49, 15, 2, 0, 10, 44, 112, 182, 196, 140, 64, 17, 2, 0, 11, 54, 156, 294, 378, 336, 204, 81, 19, 2, 0, 12, 65, 210, 450, 672, 714, 540, 285, 100
Offset: 1
Examples
T(1,1)=1 corresponds to the polynomial x. T(n,1)=0 for n>=2 because no polynomial in x of degree >=2 is harmonic. T(1,2)=2 because we can take, for example, x and y. T(2,2)=2 because we can take, for example, x^2-y^2 and xy. T(3,3)=7 because we can take, for example, x^3-3xy^2, x^3-3xz^2, y^3-3yx^2, y^3-3yz^2, z^3-3zx^2, z^3-3zy^2 and xyz. The square array starts: 1, 2, 3, 4, 5, 6, 7, ... 0, 2, 5, 9, 14, 20, 27, ... 0, 2, 7, 16, 30, 50, 77, ... 0, 2, 9, 25, 55, 105, 182, ... 0, 2, 11, 36, 91, 196, 378, ... 0, 2, 13, 49, 140, 336, 714, ... 0, 2, 15, 64, 204, 540, 1254, ... ...
References
- Harry Hochstadt, The Functions of Mathematical Physics, Wiley, New York (1971), p. 170; also Dover, New York (1986), p. 170.
Programs
-
Maple
T:=(n,p)->(2*n+p-2)*binomial(n+p-3,n-1)/n: for n from 1 to 10 do seq(T(n,p),p=1..10) od; # yields the 10 by 10 upper left corner of the square array seq(seq(T(n,p+1-n), n=1..p), p=1..12); # yields the sequence; Georg Fischer, Sep 04 2021
-
Mathematica
T[n_, m_] := Binomial[n + m - 3, n - 1]*(2*n + m - 2)/n; Table[Table[T[n, p+1-n],{n,1,p}], {p,1,12}] // Flatten (* amended by Georg Fischer, Sep 04 2021 *)
Formula
T(n,p) = (2n+p-2) * binomial(n+p-3,n-1)/n for n>=1, p>=1.
Extensions
Edited by N. J. A. Sloane, Mar 07 2006
Comments