A115255 "Correlation triangle" of central binomial coefficients A000984.
1, 2, 2, 6, 5, 6, 20, 14, 14, 20, 70, 46, 41, 46, 70, 252, 160, 134, 134, 160, 252, 924, 574, 466, 441, 466, 574, 924, 3432, 2100, 1672, 1534, 1534, 1672, 2100, 3432, 12870, 7788, 6118, 5506, 5341, 5506, 6118, 7788, 12870, 48620, 29172, 22692, 20152, 19174
Offset: 0
Examples
Triangle begins: 1; 2, 2; 6, 5, 6; 20, 14, 14, 20; 70, 46, 41, 46, 70; 252, 160, 134, 134, 160, 252; Northwest corner (square format): 1 2 6 20 70 2 5 14 46 160 6 14 41 134 466 20 46 134 441 1534
Programs
-
Mathematica
s[k_] := Binomial[2 k - 2, k - 1]; U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[s[k], {k, 1, 15}]]; L = Transpose[U]; M = L.U; TableForm[M] m[i_, j_] := M[[i]][[j]]; (* A115255 in square format *) Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]] f[n_] := Sum[m[i, n], {i, 1, n}] + Sum[m[n, j], {j, 1, n - 1}]; Table[f[n], {n, 1, 12}] Table[Sqrt[f[n]], {n, 1, 12}] (* A006134 *) Table[m[1, j], {j, 1, 12}] (* A000984 *) Table[m[j, j], {j, 1, 12}] (* A115257 *) Table[m[j, j + 1], {j, 1, 12}] (* 2*A082578 *) (* Clark Kimberling, Dec 27 2011 *)
Formula
G.f.: 1/(sqrt(1-4*x)*sqrt(1-4*x*y)*(1-x^2*y)) (format due to Christian G. Bower).
T(n, k) = Sum_{j=0..n} [j<=k]*C(2*k-2*j, k-j)*[j<=n-k]*C(2*n-2*k-2*j, n-k-j).
Comments