A203005
Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of A115255 (in square format); by antidiagonals.
Original entry on oeis.org
1, -1, 1, -6, 1, 1, -15, 47, -1, 1, -40, 270, -488, 1, 1, -165, 1738, -5866, 5829, -1, 1, -1074, 15695, -80060, 156495, -74674, 1, 1, -9039, 181581, -1360515, 4552003, -5997165, 997295, -1, 1, -86700, 2566036, -28081556
Offset: 1
Top of the array:
1...-1
1...-6....1
1...-15...47....-1
1...-40...270...-488...1
-
f[k_] := Binomial[2 k - 2, k - 1];
U[n_] := NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[f[k], {k, 1, n}]];
L[n_] := Transpose[U[n]];
F[n_] := CharacteristicPolynomial[L[n].U[n], x];
c[n_] := CoefficientList[F[n], x]
TableForm[Flatten[Table[F[n], {n, 1, 10}]]]
Table[c[n], {n, 1, 12}]
Flatten[%]
TableForm[Table[c[n], {n, 1, 10}]]
A202605
Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of the Fibonacci self-fusion matrix (A202453).
Original entry on oeis.org
1, -1, 1, -3, 1, 1, -6, 9, -1, 1, -9, 26, -24, 1, 1, -12, 52, -96, 64, -1, 1, -15, 87, -243, 326, -168, 1, 1, -18, 131, -492, 1003, -1050, 441, -1, 1, -21, 184, -870, 2392, -3816, 3265, -1155, 1, 1, -24, 246, -1404, 4871, -10500, 13710
Offset: 1
The 1st principal submatrix (ps) of A202453 is {{1}} (using Mathematica matrix notation), with p(1) = 1-x and zero-set {1}.
...
The 2nd ps is {{1,1},{1,2}}, with p(2) = 1-3x+x^2 and zero-set {0.382..., 2.618...}.
...
The 3rd ps is {{1,1,2},{1,2,3},{2,3,6}}, with p(3) = 1-6x+9x^2-x^3 and zero-set {0.283..., 0.426..., 8.290...}.
...
Top of the array A202605:
1, -1;
1, -3, 1;
1, -6, 9, -1;
1, -9, 26, -24, 1;
1, -12, 52, -96, 64, -1;
1, -15, 87, -243, 326, -168, 1;
- S.-G. Hwang, Cauchy's interlace theorem for eigenvalues of Hermitian matrices, American Mathematical Monthly 111 (2004) 157-159.
- Clark Kimberling, Fusion, Fission, and Factors, Fib. Q., 52 (2014), 195-202.
- A. Mercer and P. Mercer, Cauchy's interlace theorem and lower bounds for the spectral radius, International Journal of Mathematics and Mathematical Sciences 23, no. 8 (2000) 563-566.
-
f[k_] := Fibonacci[k];
U[n_] := NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[f[k], {k, 1, n}]];
L[n_] := Transpose[U[n]];
F[n_] := CharacteristicPolynomial[L[n].U[n], x];
c[n_] := CoefficientList[F[n], x]
TableForm[Flatten[Table[F[n], {n, 1, 10}]]]
Table[c[n], {n, 1, 12}]
Flatten[%]
TableForm[Table[c[n], {n, 1, 10}]]
A115257
Partial sums of binomial(2n,n)^2.
Original entry on oeis.org
1, 5, 41, 441, 5341, 68845, 922621, 12701245, 178338145, 2542242545, 36677022081, 534311328705, 7846771001041, 116019251361041, 1725360846921041, 25786805857871441, 387084441100423541, 5832802431123111941
Offset: 0
-
series( 2*EllipticK(4*x^(1/2))/(Pi*(1-x)) ,x=0,20); # Mark van Hoeij, Apr 06 2013
-
Table[Sum[((2k)!/(k!)^2)^2,{k,0,n}], {n,0,40}] (* Alexander Adamchuk, Jul 05 2006 *)
Accumulate[(Binomial[2#,#])^2&/@Range[0,20]] (* Harvey P. Dale, Mar 04 2011 *)
-
makelist(sum(binomial(2*k,k)^2,k,0,n),n,0,12); /* Emanuele Munarini, Oct 28 2016 */
-
a(n) = sum(k=0, n, binomial(2*k, k)^2); \\ Michel Marcus, Oct 30 2016
A115256
Diagonal sums of correlation triangle of central binomial coefficients.
Original entry on oeis.org
1, 2, 8, 25, 90, 312, 1145, 4186, 15640, 58681, 222298, 845848, 3235385, 12418650, 47827992, 184688185, 714884186, 2772776984, 10774163001, 41932100698, 163430680600, 637793652281, 2491918144602, 9746480252952, 38157725306425
Offset: 0
-
CoefficientList[Series[1/((Sqrt[1-4x])(Sqrt[1-4x^2])(1-x^3)), {x,0,30}], x] (* Harvey P. Dale, Feb 15 2012 *)
-
my(x='x+O('x^50)); Vec(1/(sqrt(1-4*x)*sqrt(1-4*x^2)*(1-x^3))) \\ G. C. Greubel, Mar 18 2017
Showing 1-4 of 4 results.
Comments