cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 77 results. Next

A204021 Triangle read by rows: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of min(2i-1,2j-1) (A157454).

Original entry on oeis.org

1, 1, -1, 2, -4, 1, 4, -12, 9, -1, 8, -32, 40, -16, 1, 16, -80, 140, -100, 25, -1, 32, -192, 432, -448, 210, -36, 1, 64, -448, 1232, -1680, 1176, -392, 49, -1, 128, -1024, 3328, -5632, 5280, -2688, 672, -64, 1, 256, -2304, 8640, -17472, 20592
Offset: 0

Views

Author

Clark Kimberling, Jan 11 2012

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences.
a(0)=1 by convention. - Philippe Deléham, Nov 17 2013
The n roots of the n-th polynomial are 1/(1+cos((2*k-1)*Pi/(2*n))) for k = 1..n. See my pdf in the link section for the proof. - Jianing Song, Dec 01 2023

Examples

			Top of the triangle:
  1
  1....-1
  2....-4.....1
  4....-12....9....-1
  8....-32....40...-16....1
  16...-80....140..-100...25....-1
  32...-192...432..-448...210...-36....1
  ...
-448=2*(-100)-2*140-(-32). - _Philippe Deléham_, Nov 17 2013
		

References

  • (For references regarding interlacing roots, see A202605.)

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := Min[2 i - 1, 2 j - 1];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[6]] (* 6x6 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]   (* A157454 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                  (* A204021 *)
    TableForm[Table[c[n], {n, 1, 10}]]

Formula

From Peter Bala, May 01 2012: (Start)
The triangle appears to be a signed version of the row reverse of A211957.
If true, then for 0 <= k <= n-1, T(n,k) = (-1)^k*n/(n-k)*2^(n-k-1)*binomial(2*n-k-1,k) and Sum_{k = 0..n} T(n,k)*x^(n-k) = 1/2*(-1)^n*(b(2*n,-2*x) + 1)/b(n,-2*x), where b(n,x) := Sum_{k = 0..n} binomial(n+k,2*k)*x^k are the Morgan-Voyce polynomials of A085478.
Conjectural o.g.f.: t*(1-x-x^2*t)/(1-2*t*(1-x)+t^2*x^2) = (1-x)*t + (2-4*x+x^2)*t^2 + .... (End)
T(n,k)=2*T(n-1,k)-2*T(n-1,k-1)-T(n-2,k-2), T(0,0)=T(1,0)=1, T(1,1)=-1, T(n,k)=0 of k<0 or if k>n. - Philippe Deléham, Nov 17 2013

A202671 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of the symmetric matrix A202670 based on A000290 (the squares); by antidiagonals.

Original entry on oeis.org

1, -1, 1, -18, 1, 1, -84, 116, -1, 1, -214, 1707, -470, 1, 1, -408, 9430, -17896, 1449, -1, 1, -666, 31877, -196046, 124782, -3724, 1, 1, -988, 81720, -1120768, 2530948, -656400, 8400, -1, 1, -1374, 175727, -4386774, 23536143
Offset: 1

Views

Author

Clark Kimberling, Dec 22 2011

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are positive, and they interlace the zeros of p(n+1).

Examples

			The 1st principal submatrix (ps) of A202670 is {{1}} (using Mathematica matrix notation), with p(1)=1-x and zero-set {1}.
...
The 2nd ps is {{1,4},{4,17}}, with p(2)=1-18x+x^2 and zero-set {0.556..., 17.944...}.
...
The 3rd ps is {{1,4,9},{4,17,40},{9,40,98}}, with p(3)=1-84x+116x^2-x^3 and zero-set {0.012..., 0.716..., 115.271...}.
...
Top of the array:
1...-1
1...-18..  ..1
1...-84... 116.....-1
1...-214...1707..-470...1
		

Crossrefs

Cf. A202670, A000290, A202605 (the Fibonacci case).

Programs

  • Mathematica
    f[k_] := k^2
    U[n_] := NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[f[k], {k, 1, n}]];
    L[n_] := Transpose[U[n]];
    F[n_] := CharacteristicPolynomial[L[n].U[n], x];
    c[n_] := CoefficientList[F[n], x]
    TableForm[Flatten[Table[F[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]
    TableForm[Table[c[n], {n, 1, 10}]]

A203950 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of A203949.

Original entry on oeis.org

1, -1, 1, -3, 1, 1, -6, 5, -1, 1, -13, 18, -8, 1, 1, -24, 52, -40, 12, -1, 1, -39, 131, -155, 78, -16, 1, 1, -58, 291, -508, 391, -138, 21, -1, 1, -81, 584, -1410, 1548, -840, 225, -27, 1, 1, -108, 1078, -3448, 5151, -4016, 1658, -348, 33, -1, 1
Offset: 1

Views

Author

Clark Kimberling, Jan 08 2012

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are positive, and they interlace the zeros of p(n+1). See A202605 for a guide to related sequences.

Examples

			Top of the array:
1...-1
1...-3....1
1...-6....5....-1
1...-13....18...-8....1
1...-24...52...-40...12...-1
		

References

  • (For references regarding interlacing roots, see A202605.)

Crossrefs

Programs

  • Mathematica
    t = {1, 1, 0}; t1 = Flatten[{t, t, t, t, t, t, t, t, t}];
    f[k_] := t1[[k]];
    U[n_] :=
      NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[
       Table[f[k], {k, 1, n}]];
    L[n_] := Transpose[U[n]];
    p[n_] := CharacteristicPolynomial[L[n].U[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]  (* A203950 *)
    Flatten[%]
    TableForm[Table[c[n], {n, 1, 10}]]

A203993 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of {|i-j}, (A049581).

Original entry on oeis.org

0, -1, -1, 0, 1, 4, 6, 0, -1, -12, -32, -20, 0, 1, 32, 120, 140, 50, 0, -1, -80, -384, -648, -448, -105, 0, 1, 192, 1120, 2464, 2520, 1176, 196, 0, -1, -448, -3072, -8320, -11264, -7920, -2688, -336, 0, 1, 1024, 8064, 25920, 43680
Offset: 1

Views

Author

Clark Kimberling, Jan 09 2012

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 for a guide to related sequences.
Also the coefficients of the detour and distance polynomials of the n-path graph P_n. - Eric W. Weisstein, Apr 07 2017
p(n,x) = (-x)^n*(x*(1 + T(n, 1+1/x)) - n*S(n-1, 2*(1+1/x)))/(2*x), with the Chebyshev polynomials S (A049310) and T (A053120). This is the rewritten formula given below in the Mathematica program by Weisstein. - Wolfdieter Lang, Feb 02 2018

Examples

			The array T (a table if row n=0 is by convention put to 0) begins:
n\k     0      1      2       3       4       5      6      7     8    9  10 ...
(0:     0)
1:      0     -1
2:     -1      0      1
3:      4      6      0      -1
4:    -12    -32    -20       0       1
5:     32    120    140      50       0      -1
6:    -80   -384   -648    -448    -105       0      1
7:    192   1120   2464    2520    1176     196      0     -1
8:   -448  -3072  -8320  -11264   -7920   -2688   -336      0     1
9:   1024   8064  25920   43680   41184   21384   5544    540     0   -1
10: -2304 -20480 -76160 -153600 -182000 -128128 -51480 -10560  -825    0   1
... reformatted and extended. - _Wolfdieter Lang_, Feb 02 2018
		

References

  • (For references regarding interlacing roots, see A202605.)

Crossrefs

Cf. A049310, A049581, A053120, A085750 (column k=0, Det(M_n)), A166445(n-1) (alternating row sums), A202605.

Programs

  • Mathematica
    (* begin*)
    f[i_, j_] := Abs[i - j];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[6]] (* 6x6 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
    {n, 1, 12}, {i, 1, n}]]  (* A049581 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]    (* A203993 *)
    TableForm[Table[c[n], {n, 1, 10}]]
    (* end *)
    CoefficientList[Table[CharacteristicPolynomial[SparseArray[{i_, j_} :> Abs[i - j], n], x], {n, 10}], x] //Flatten (* Eric W. Weisstein, Apr 07 2017 *)
    CoefficientList[Table[((-x)^n (x + x ChebyshevT[2 n, Sqrt[1 + 1/(2 x)]] - n ChebyshevU[n - 1, 1 + 1/x]))/(2 x), {n, 10}], x] // Flatten (* Eric W. Weisstein, Apr 07 2017 *)
    CoefficientList[Table[1/4 (2 (-x)^n + (-1 - x - Sqrt[1 + 2 x])^n + (-1 - x + Sqrt[1 + 2 x])^n + (n (-(-1 - x - Sqrt[1 + 2 x])^n + (-1 - x + Sqrt[1 + 2 x])^n))/Sqrt[1 + 2 x]), {n, 10}], x] // Flatten (* Eric W. Weisstein, Apr 07 2017 *)
    CoefficientList[LinearRecurrence[{-4 - 5 x, -2 (2 + 6 x + 5 x^2), -2 x (2 + 6 x + 5 x^2), -x^3 (4 + 5 x), -x^5}, {-x, (-1 + x) (1 + x), -(2 + x) (-2 - 2 x + x^2), (-6 - 4 x + x^2) (2 + 4 x + x^2), -(4 + 6 x + x^2) (-8 - 18 x - 6 x^2 + x^3)}, 10], x] // Flatten (* Eric W. Weisstein, Apr 07 2017 *)

Formula

T(n, k) = [x^k] p(n,x), with p(n,x) = Determinant(M_n - x*1_n), with the n x n matrix M_n with entries M_n(i, j) = |i-j|, for n >= 1, k = 0, 1, ..., n. For p(n,x) see a comment above and the Mathematica formulas by Weisstein.- Wolfdieter Lang, Feb 02 2018

A203995 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of min{i-j+1,j-i+1} (A203994).

Original entry on oeis.org

1, -1, 1, -2, 1, 0, -2, 3, -1, -4, 8, 0, -4, 1, -16, 56, -56, 10, 5, -1, -48, 224, -360, 224, -35, -6, 1, -128, 736, -1584, 1560, -672, 84, 7, -1, -320, 2176, -5824, 7744, -5280, 1680, -168, -8, 1, -768, 6016, -19200, 32032, -29744
Offset: 1

Views

Author

Clark Kimberling, Jan 09 2012

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 for a guide to related sequences.

Examples

			Top of the array:
 1...-1
 1...-2....1
 0...-2....3...-1
-4....8....0...-4....1
		

References

  • (For references regarding interlacing roots, see A202605.)

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := Min[i - j + 1, j - i + 1];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[6]] (* 6x6 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
    {n, 1, 12}, {i, 1, n}]]  (* A203994 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]    (* A203995 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A202672 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of the symmetric matrix A087062 based on (1,1,1,1,...); by antidiagonals.

Original entry on oeis.org

1, -1, 1, -3, 1, 1, -5, 6, -1, 1, -7, 15, -10, 1, 1, -9, 28, -35, 15, -1, 1, -11, 45, -84, 70, -21, 1, 1, -13, 66, -165, 210, -126, 28, -1, 1, -15, 91, -286, 495, -462, 210, -36, 1, 1, -17, 120, -455, 1001, -1287, 924, -330, 45, -1, 1, -19, 153
Offset: 1

Views

Author

Clark Kimberling, Dec 22 2011

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix of A087062. The zeros of p(n) are positive, and they interlace the zeros of p(n+1).
Closely related to A076756; however, for example, successive rows of A076756 are (1,-3,1), (-1,5,-6,1), compared to rows (1,-3,1), (1,-5,6,-1) of A202672.

Examples

			The 1st principal submatrix (ps) of A087062 is {{1}} (using Mathematica matrix notation), with p(1)=1-x and zero-set {1}.
...
The 2nd ps is {{1,1},{1,2}}, with p(2)=1-3x+x^2 and zero-set {0.381..., 2.618...}.
...
The 3rd ps is {{1,1,1},{1,2,2},{1,2,3}}, with p(3)=1-5x+6x^2-x^3 and zero-set {0.283..., 0.426..., 8.290...}.
...
Top of the array:
1...-1
1...-3....1
1...-5....6....-1
1...-7...15...-10....1
1...-9...28...-35...15...-1
		

Crossrefs

Cf. A087062, A202673 (based on n), A202671 (based on n^2), A202605 (based on Fibonacci numbers), A076756.

Programs

  • Mathematica
    U[n_] := NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[1, {k, 1, n}]];
    L[n_] := Transpose[U[n]];
    F[n_] := CharacteristicPolynomial[L[n].U[n], x];
    c[n_] := CoefficientList[F[n], x]
    TableForm[Flatten[Table[F[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]
    TableForm[Table[c[n], {n, 1, 10}]]
    Table[(F[k] /. x -> -2), {k, 1, 30}] (* A007583 *)
    Table[(F[k] /. x -> 2), {k, 1, 30}]  (* A087168 *)

A202673 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of the symmetric matrix A115263 based on (1,2,3,4,...); by antidiagonals.

Original entry on oeis.org

1, -1, 1, -6, 1, 1, -12, 20, -1, 1, -18, 75, -50, 1, 1, -24, 166, -328, 105, -1, 1, -30, 293, -1050, 1134, -196, 1, 1, -36, 456, -2432, 5140, -3312, 336, -1, 1, -42, 655, -4690, 15471, -20814, 8514, -540, 1, 1, -48, 890, -8040, 36771, -80584
Offset: 1

Views

Author

Clark Kimberling, Dec 22 2011

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix of A115262 (when A115262 is formatted as a square matrix). The zeros of p(n) are positive, and they interlace the zeros of p(n+1).

Examples

			The 1st principal submatrix (ps) of A115263 is {{1}} (using Mathematica matrix notation), with p(1)=1-x and zero-set {1}.
...
The 2nd ps is {{1,2},{2,5}}, with p(2)=1-6x+x^2 and zero-set {0.171..., 5.828...}.
...
The 3rd ps is {{1,2,3},{2,5,8},{3,8,14}}, with p(3)=1-12x+20x^2-x^3 and zero-set {0.099..., 0.516..., 19.383...}.
...
Top of the array:
1....-1
1....-6.....1
1...-12....20.....-1
1...-18....75....-50....1
1...-24...166...-328..105..-1
		

Crossrefs

Cf. A115262, A202671 (based on n^2), A202605 (based on Fibonacci numbers)

Programs

  • Mathematica
    U[n_] := NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[k, {k, 1, n}]];
    L[n_] := Transpose[U[n]];
    F[n_] := CharacteristicPolynomial[L[n].U[n], x];
    c[n_] := CoefficientList[F[n], x]
    TableForm[Flatten[Table[F[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]
    TableForm[Table[c[n], {n, 1, 10}]]

A202677 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of the symmetric matrix A202676 based on (1,4,7,10,13,...); by antidiagonals.

Original entry on oeis.org

1, -1, 1, -18, 1, 1, -116, 84, -1, 1, -538, 1347, -250, 1, 1, -2256, 11566, -8216, 585, -1, 1, -9158, 75453, -118722, 35086, -1176, 1, 1, -36796, 426288, -1152432, 801084, -118656, 2128, -1, 1, -147378, 2214919, -8910538, 11175711, -4079622, 339762, -3564, 1, 1, -589736, 10915650
Offset: 1

Views

Author

Clark Kimberling, Dec 22 2011

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are positive, and they interlace the zeros of p(n+1).

Examples

			The 1st principal submatrix (ps) of A202676 is {{1}} (using Mathematica matrix notation), with p(1)=1-x and zero-set {1}.
...
The 2nd ps is {{1,4},{4,17}}, with p(2)=1-18x+x^2 and zero-set {0.055..., 17.944...}.
...
The 3rd ps is {{1,4,7},{4,17,32},{7,32,66}}, with p(3)=1-116x+84x^2-x^3 and zero-set {0.008..., 1.395..., 82.595...}.
...
Top of the array:
1...-1
1...-18....1
1...-116...84.....-1
1...-538...1347...-250...1
		

Crossrefs

Programs

  • Mathematica
    f[k_] := 3 k - 2
    U[n_] := NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[f[k], {k, 1, n}]];
    L[n_] := Transpose[U[n]];
    F[n_] := CharacteristicPolynomial[L[n].U[n], x];
    c[n_] := CoefficientList[F[n], x]
    TableForm[Flatten[Table[F[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]
    TableForm[Table[c[n], {n, 1, 10}]]

A202678 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of the symmetric matrix A185957; by antidiagonals.

Original entry on oeis.org

1, -1, 1, -11, 1, 1, -30, 57, -1, 1, -50, 395, -203, 1, 1, -70, 1133, -3221, 574, -1, 1, -90, 2271, -15840, 19011, -1386, 1, 1, -110, 3809, -45980, 156892, -88729, 2982, -1, 1, -130, 5747, -101640, 660617, -1195097, 346295, -5874
Offset: 1

Views

Author

Clark Kimberling, Dec 22 2011

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are positive, and they are interlace the zeros of p(n+1).

Examples

			The 1st principal submatrix (ps) of A185957 is {{1}} (using Mathematica matrix notation), with p(1)=1-x and zero-set {1}.
...
The 2nd ps is {{1,3},{3,10}}, with p(2)=1-11x+x^2 and zero-set {0.091..., 10.908...}.
...
The 3rd ps is {{1,3,6},{3,10,21},{6,21,46}}, with p(3)=1-30x+57x^2-x^3 and zero-set {0.035..., 0.495..., 56.469...}.
...
Top of the array:
1...-1
1...-11...1
1...-30...57....-1
1...-50...395...-203...1
		

Crossrefs

Programs

  • Mathematica
    f[k_] := k (k + 1)/2
    U[n_] :=  NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[f[k], {k, 1, n}]];
    L[n_] := Transpose[U[n]];
    F[n_] := CharacteristicPolynomial[L[n].U[n], x];
    c[n_] := CoefficientList[F[n], x]
    TableForm[Flatten[Table[F[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]
    TableForm[Table[c[n], {n, 1, 10}]]

A202868 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of the symmetric matrix A115216; by antidiagonals.

Original entry on oeis.org

1, -1, 1, -6, 1, 1, -11, 27, -1, 1, -16, 78, -112, 1, 1, -21, 154, -458, 453, -1, 1, -26, 255, -1164, 2431, -1818, 1, 1, -31, 381, -2355, 7635, -12141, 7279, -1, 1, -36, 532, -4156, 18390, -45660, 58260, -29124, 1, 1, -41, 708, -6692, 37646, -128190
Offset: 1

Views

Author

Clark Kimberling, Dec 26 2011

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are positive, and they interlace the zeros of p(n+1).

Examples

			The 1st principal submatrix (ps) of A115216 is {{1}} (using Mathematica matrix notation), with p(1)=1-x and zero-set {1}.
...
The 2nd ps is {{1,2},{2,5}}, with p(2)=1-6x+x^2 and zero-set {0.171..., 5.828...}.
...
The 3rd ps is {{1,2,4},{2,5,10},{4,10,21}}, with p(3)=1-30x+57x^2-x^3 and zero-set {0.136..., 0.276..., 2.587...}.
...
Top of the array:
1...-1
1...-6....1
1...-11...27...-1
1...-16...78...-112...1
		

Crossrefs

Programs

  • Mathematica
    f[k_] := 2^(k - 1);
    U[n_] := NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[f[k], {k, 1, n}]];
    L[n_] := Transpose[U[n]];
    F[n_] := CharacteristicPolynomial[L[n].U[n], x];
    c[n_] := CoefficientList[F[n], x]
    TableForm[Flatten[Table[F[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]  (* A202868 sequence *)
    TableForm[Table[c[n], {n, 1, 10}]]  (* A202868 array *)
    Table[(F[k] /. x -> -1), {k, 1, 30}]   (* A154626 *)
    Table[(F[k] /. x -> 1), {k, 1, 30}]    (* A058922 *)
Showing 1-10 of 77 results. Next