A115260 Prime numbers in the sequence of the absolute difference of the sum of digits in odd positions and the sum of digits in even positions of prime numbers.
2, 3, 5, 7, 2, 7, 2, 3, 3, 2, 5, 2, 5, 2, 2, 3, 5, 7, 3, 3, 2, 2, 3, 3, 7, 5, 2, 3, 7, 2, 2, 5, 2, 5, 3, 3, 5, 7, 7, 5, 2, 5, 13, 3, 2, 3, 5, 3, 2, 7, 2, 5, 5, 7, 13, 3, 5, 2, 2, 7, 13, 3, 2, 3, 5, 17, 7, 13, 5, 3, 7, 17, 13, 7, 3, 7, 7, 2, 3, 5, 5, 2, 2, 7, 3, 3, 7, 2, 3, 7, 2, 3, 7, 2, 5, 5, 3, 2, 7, 3, 5, 7
Offset: 1
Examples
a(37) = 3 because 37th prime = 157, (7+1) - 5 = 3, 3 is prime.
Programs
-
Maple
select(isprime,[seq(abs(sum(convert(ithprime(a),base,10)[2*i],i=1..nops(convert (ithprime(a),base,10))/2)-sum(convert(ithprime(a),base,10)[2*i+1],i=0..(nops (convert(ithprime(a),base,10))-1)/2)),a=1..N)]);
Comments