cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A115276 Number of partitions of {1,...,n} into block sizes not a multiple of 4.

Original entry on oeis.org

1, 1, 2, 5, 14, 47, 173, 702, 3124, 14901, 76405, 417210, 2411466, 14731095, 94573911, 636575050, 4480990936, 32887804361, 251236573561, 1993395483746, 16397468177406, 139634290253907, 1229013163330947, 11166172488138322, 104593176077399652
Offset: 0

Views

Author

Christian G. Bower, Jan 18 2006

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(`if`(
          irem(j, 4)=0, 0, binomial(n-1, j-1)*a(n-j)), j=1..n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 17 2015
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[If[Mod[j, 4] == 0, 0, Binomial[n - 1, j - 1]*a[n - j]], {j, 1, n}]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 20 2016, after Alois P. Heinz *)

Formula

E.g.f.: exp(sinh(x)+(cosh(x)-cos(x))/2).

A115278 Number of partitions of {1,...,2*n} into even sized blocks such that no block size is repeated.

Original entry on oeis.org

1, 1, 1, 16, 29, 256, 14422, 49141, 490429, 10758400, 1797335306, 9458619391, 133756636598, 2528529510391, 137864810180749, 53441183229799381, 410251032050409469, 7615997734377068128, 167055180095977694194, 6741819165851219788075, 738863335901972011745434
Offset: 0

Views

Author

Christian G. Bower, Jan 18 2006

Keywords

Crossrefs

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-2), j=0..min(1, n/i))))
        end:
    a:= n-> b(2*n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 08 2015
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Array[i &, j]]]/j!* b[n - i*j, i - 2], {j, 0, Min[1, n/i]}]]]; a[n_] := b[2 n, 2 n]; Table[ a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 22 2016, after Alois P. Heinz *)

Formula

E.g.f.: B(x) of b(n) where b(2*n)=a(n), b(2*n+1)=0. B(x)=Product {m >= 1} (1+x^(2*m)/(2*m)!).

A115275 Number of partitions of {1,...,n} into blocks such that no block size is repeated more than 3 times.

Original entry on oeis.org

1, 1, 2, 5, 14, 51, 187, 820, 3670, 18191, 97917, 554500, 3334465, 20871592, 138440031, 972083845, 6985171390, 52194795327, 412903730293, 3313067916192, 28017395030419, 241504438776956, 2189375704925081, 19771679215526507, 187677937412341677
Offset: 0

Views

Author

Christian G. Bower, Jan 18 2006

Keywords

Crossrefs

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(multinomial(n, n-i*j, i$j)/j!*
          b(n-i*j, i-1), j=0..min(3, n/i))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Sep 17 2015
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[multinomial[n, Join[{n-i*j}, Array[i&, j]]]/j!*b[n - i*j, i-1], {j, 0, Min[3, n/i]}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Oct 29 2015, after Alois P. Heinz *)

Formula

E.g.f.: Product {m >= 1} (1+x^m/m!+(x^m/m!)^2+(x^m/m!)^3). [this e.g.f. is incorrect. - Vaclav Kotesovec, Oct 29 2015]
Showing 1-3 of 3 results.