A115278 Number of partitions of {1,...,2*n} into even sized blocks such that no block size is repeated.
1, 1, 1, 16, 29, 256, 14422, 49141, 490429, 10758400, 1797335306, 9458619391, 133756636598, 2528529510391, 137864810180749, 53441183229799381, 410251032050409469, 7615997734377068128, 167055180095977694194, 6741819165851219788075, 738863335901972011745434
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..370
Programs
-
Maple
with(combinat): b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add( multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-2), j=0..min(1, n/i)))) end: a:= n-> b(2*n$2): seq(a(n), n=0..30); # Alois P. Heinz, Mar 08 2015
-
Mathematica
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Array[i &, j]]]/j!* b[n - i*j, i - 2], {j, 0, Min[1, n/i]}]]]; a[n_] := b[2 n, 2 n]; Table[ a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 22 2016, after Alois P. Heinz *)
Formula
E.g.f.: B(x) of b(n) where b(2*n)=a(n), b(2*n+1)=0. B(x)=Product {m >= 1} (1+x^(2*m)/(2*m)!).