A115356 Matrix (1,x)+(x,x^2) in Riordan array notation.
1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1
Offset: 0
Examples
Triangle begins: n\k| 0 1 2 3 4 5 6 7 8 9 ---+------------------------------- 0 | 1; 1 | 1, 1; 2 | 0, 0, 1; 3 | 0, 1, 0, 1; 4 | 0, 0, 0, 0, 1; 5 | 0, 0, 1, 0, 0, 1; 6 | 0, 0, 0, 0, 0, 0, 1; 7 | 0, 0, 0, 1, 0, 0, 0, 1; 8 | 0, 0, 0, 0, 0, 0, 0, 0, 1; 9 | 0, 0, 0, 0, 1, 0, 0, 0, 0, 1; (row and column numbering added by _Antti Karttunen_, Jan 19 2025)
Links
Crossrefs
Programs
-
PARI
A115356off1(n) = (ispolygonal(n,3) || (!(n%2) && issquare(n/2))); \\ (This is one-based) A115356(n) = A115356off1(1+n); \\ (zero-based) - Antti Karttunen, Jan 19 2025
Formula
Number triangle T(n, k) = if(n=k, 1, 0) OR if(n=2k+1, 1, 0).
a(n) = A010054(n) + A379480(n). [As a flat sequence with starting offset 1] - Antti Karttunen, Jan 19 2025
Comments