A115379 Number of positive integers k < n such that n XOR k < n and gcd(n,k) is odd.
0, 1, 0, 3, 0, 3, 2, 7, 0, 3, 2, 7, 4, 11, 6, 15, 0, 3, 2, 7, 4, 11, 6, 15, 8, 19, 10, 23, 12, 27, 14, 31, 0, 3, 2, 7, 4, 11, 6, 15, 8, 19, 10, 23, 12, 27, 14, 31, 16, 35, 18, 39, 20, 43, 22, 47, 24, 51, 26, 55, 28, 59, 30, 63, 0, 3, 2, 7, 4, 11, 6, 15, 8, 19, 10, 23, 12, 27, 14, 31, 16, 35
Offset: 0
Keywords
Links
Programs
-
Mathematica
Table[Sum[If[BitXor[n, k]< n && OddQ[GCD[n, k]], 1, 0], {k, 0, n}], {n, 0, 81}] (* Indranil Ghosh, Mar 16 2017 *)
-
PARI
a(n)=sum(k=0,n,if(bitxor(n,k)
Formula
a(2^n) = 0, a(2^n-1) = 2^n-1, for n >= 0. a(2^n+1)=3 (n>0), a(2^n+2)=2 (n>1), a(2^n+3)=7 (n>1), a(2^n+4)=4 (n>2), a(2^n+5)=11 (n>2), etc.
Comments