A115426
Numbers k such that the concatenation of k with k+2 gives a square.
Original entry on oeis.org
7874, 8119, 69476962, 98010199, 108746354942, 449212110367, 544978035127, 870501316279, 998001001999, 1428394731903223, 1499870932756487, 1806498025502498, 1830668275445687, 1911470478658759, 2255786189655202
Offset: 1
8119//8121 = 9011^2, where // denotes concatenation.
98010199//98010200 = 99000100 * 99000102.
98010199//98010197 = 99000099 * 99000103.
Cf.
A030465,
A102567,
A115427,
A115428,
A115429,
A115430,
A115431,
A115432,
A115433,
A115434,
A115435,
A115436,
A115437.
-
from itertools import count, islice
from sympy import sqrt_mod
def A115426_gen(): # generator of terms
for j in count(0):
b = 10**j
a = b*10+1
for k in sorted(sqrt_mod(2,a,all_roots=True)):
if a*(b-2) <= k**2-2 < a*(a-3):
yield (k**2-2)//a
A115426_list = list(islice(A115426_gen(),40)) # Chai Wah Wu, Feb 20 2024
A115429
Numbers k such that the concatenation of k with k+8 gives a square.
Original entry on oeis.org
6001, 6433, 11085116, 44496481, 96040393, 115916930617, 227007035017, 274101929528, 434985419768, 749978863753, 996004003993, 1365379857457948, 1410590590957816, 1762388551055953, 2307340946901148, 2700383162251217
Offset: 1
6001//6009 = 7747^2, where // denotes concatenation.
96040393//96040400 = 98000200 * 98000202.
96040393//96040397 = 98000199 * 98000203.
96040393//96040392 = 98000198 * 98000204.
Cf.
A030465,
A102567,
A115426,
A115437,
A115428,
A115430,
A115431,
A115432,
A115433,
A115434,
A115435,
A115436,
A115440.
A115431
Numbers k such that the concatenation of k with k-2 gives a square.
Original entry on oeis.org
6, 5346, 8083, 10578, 45531, 58626, 2392902, 2609443, 7272838, 51248898, 98009803, 159728062051, 360408196038, 523637103531, 770378933826, 998000998003, 1214959556998, 1434212848998, 3860012299771, 4243705560771
Offset: 1
8083_8081 = 8991^2.
98009803_98009800 = 98999900 * 98999902, where _ denotes
concatenation
Cf.
A030465,
A102567,
A115426,
A115437,
A115428,
A115429,
A115430,
A115432,
A115433,
A115434,
A115435,
A115436,
A115442.
-
f:= proc(n) local S;
S:= map(t -> rhs(op(t))^2 mod 10^n+2, [msolve(x^2+2,10^n+1)]);
op(sort(select(t -> t-2 >= 10^(n-1) and t-2 < 10^n and issqr(t-2 + t*10^n), S)))
end proc:
seq(f(n),n=1..20); # Robert Israel, Feb 20 2019
A115428
Numbers k such that the concatenation of k with k+5 gives a square.
Original entry on oeis.org
1, 4, 20, 31, 14564, 38239, 69919, 120395, 426436, 902596, 7478020, 9090220, 6671332084, 8114264059, 8482227259, 9900250996, 2244338786836, 2490577152964, 2509440638591, 2769448208395, 7012067592220
Offset: 1
Cf.
A030465,
A102567,
A115426,
A115437,
A115429,
A115430,
A115431,
A115432,
A115433,
A115434,
A115435,
A115436,
A115439.
A115430
Numbers k such that the concatenation of k with k+9 gives a square.
Original entry on oeis.org
216, 287, 515, 675, 1175, 4320, 82640, 960795, 1322312, 4049591, 16955015, 34602080, 171010235, 181964891, 183673467, 187160072, 321920055, 326530616, 328818032, 343942560, 470954312, 526023432, 528925616, 534830855
Offset: 1
Cf.
A030465,
A102567,
A115426,
A115437,
A115428,
A115429,
A115431,
A115432,
A115433,
A115434,
A115435,
A115436,
A115441.
A115432
Numbers k such that the concatenation of k with k-4 gives a square.
Original entry on oeis.org
65, 6653, 9605, 218413, 283720, 996005, 58446925, 99960005, 6086712229, 7385370133, 8478948853, 9999600005, 120178240093, 161171620229, 358247912200, 426843573160, 893417179213, 999996000005, 23376713203604
Offset: 1
Cf.
A030465,
A102567,
A115426,
A115437,
A115428,
A115429,
A115430,
A115431,
A115433,
A115434,
A115435,
A115436,
A115443.
-
f:= proc(d) uses NumberTheory; local m,r;
m:= 10^d + 1;
if QuadraticResidue(-4,m) = -1 then return NULL fi;
r:= ModularSquareRoot(-4, m);
op(sort(select(t -> t >= 10^(d-1)+4 and t < 10^d+4, map(t -> ((r*t mod m)^2+4)/m, convert(RootsOfUnity(2,m),list)))))
end proc:
map(f, [$1..20]); # Robert Israel, Sep 12 2023
A115435
Numbers k such that the concatenation of k with k-8 gives a square.
Original entry on oeis.org
2137, 2892, 6369, 12217, 21964, 28233, 42312, 4978977, 9571608, 18642249, 32288908, 96039609, 200037461217, 305526508312, 570666416233, 638912248204, 996003996009, 1846991026584, 3251664327537, 4859838227992
Offset: 1
18642249_18642241 = 43176671^2.
Cf.
A030465,
A102567,
A115426,
A115437,
A115428,
A115429,
A115430,
A115431,
A115432,
A115433,
A115434,
A115436,
A115446.
A115434
Numbers k such that the concatenation of k with k-7 gives a square.
Original entry on oeis.org
8, 16, 1337032, 2084503, 2953232, 4023943, 1330033613070195328, 4036108433661798551, 8283744867954114232, 6247320195351414276186411625291, 9452080202814205132771066881607
Offset: 1
4023943_4023936 = 6343456^2.
Cf.
A030465,
A102567,
A115426,
A115437,
A115428,
A115429,
A115430,
A115431,
A115432,
A115433,
A115435,
A115436,
A115445.
A115436
Numbers k such that the concatenation of k with k-9 gives a square.
Original entry on oeis.org
50, 5234, 9410, 638370, 994010, 12477933, 41829698, 99940010, 1087279650, 4492494893, 6226356365, 7765453730, 9999400010, 806057802450, 842377434050, 960398039610, 999994000010, 21338126513658, 24752544267698
Offset: 1
638370_638361 = 798981^2.
Cf.
A030465,
A102567,
A115426,
A115437,
A115428,
A115429,
A115430,
A115431,
A115432,
A115433,
A115434,
A115435,
A115447.
A115437
Numbers m such that the concatenation of m with m+4 gives a square.
Original entry on oeis.org
96, 205, 300, 477, 732, 1920, 3157, 52896, 120085, 427020, 8264460, 88581312, 112000885, 112917765, 143075580, 152863360, 193537077, 233788192, 266755221, 313680096, 370908477, 386568925, 440852992, 442670220
Offset: 1
Using "." to denote concatenation, 120085.120089 = 346533^2.
Cf.
A030465,
A102567,
A115426,
A115428,
A115429,
A115430,
A115431,
A115432,
A115433,
A115434,
A115435,
A115436,
A115438.
-
Select[Range[10^5],IntegerQ@Sqrt@FromDigits@Flatten[IntegerDigits/@{#,#+4}]&] (* Giorgos Kalogeropoulos, Jul 27 2021 *)
Showing 1-10 of 11 results.
Comments